Construction of linear codes over Σ=P4s=0 vs5A4
dc.citation.epage | 158 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 147 | |
dc.contributor.affiliation | Університет Мостефи Бен Булейд | |
dc.contributor.affiliation | Mostefa Ben Boulaid University | |
dc.contributor.author | Малкі, М. | |
dc.contributor.author | Шату, К. | |
dc.contributor.author | Malki, M. | |
dc.contributor.author | Chatouh, K. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:54:49Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Мета цієї статті — запропонувати нове сімейство кодів. Ми визначаємо цю сім’ю над кільцем Σ=P4s=0 vs5A4, з v55 = v5. Виводимо його властивості, матрицю-генератор і зображення Грея. Це нове сімейство кодів проілюстровано за допомогою трьох програм. | |
dc.description.abstract | The aim of this paper is to propose a new family of codes. We define this family over the ring Σ=P4s=0 vs5A4, with v55 = v5. We derive its properties, a generator matrix and Gray images. This new family of codes is illustrated by three applications. | |
dc.format.extent | 147-158 | |
dc.format.pages | 12 | |
dc.identifier.citation | Malki M. Construction of linear codes over Σ=P4s=0 vs5A4 / M. Malki, K. Chatouh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 147–158. | |
dc.identifier.citationen | Malki M. Construction of linear codes over Σ=P4s=0 vs5A4 / M. Malki, K. Chatouh // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 147–158. | |
dc.identifier.doi | 10.23939/mmc2023.01.147 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63486 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 1 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (10), 2023 | |
dc.relation.references | [1] Chatouh K., Guenda K., Aaron Gulliver T. New classes of codes over Rq,p,m = Zpm[u1, u2, · · · , uq]/hu2 i = 0, uiuj − ujuii and their applications. Computational and Applied Mathematics. 39, 152 (2020). | |
dc.relation.references | [2] Yildiz B., Karadeniz S. Linear codes over Z4 +uZ4: MacWilliams identities, projections, formally self-dual codes. Finite Fields and Their Applications. 27, 24–40 (2014). | |
dc.relation.references | [3] Klemm M. Selbstduale Codes ¨uber dem Ring der ganzen Zahlen modulo 4. Archiv der Mathematik. 53 (2), 201–207 (1989). | |
dc.relation.references | [4] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol´e P. The Z4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory. 40 (2), 301–319 (1994). | |
dc.relation.references | [5] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol´e P. On the apparent duality of the Kerdock and Preparata codes. International Symposium on Applied Algebra, Algebraic Algorithms and Error–Correcting Codes. 13–24 (1993). | |
dc.relation.references | [6] Bustomi, Santika A. P., Suprijanto D. Linear codes over the ring Z4 + uZ4 + vZ4 + wZ4 + uvZ4 + uwZ4 + vwZ4 + uvwZ4. Preprint arXiv:1904.11117v1 (2019). | |
dc.relation.references | [7] Li P., Guo X., Zhu S., Kai X. Some results on linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4. Journal of Applied Mathematics and Computing. 54 (1–2), 307-324 (2017). | |
dc.relation.references | [8] Ndiaye O. One cyclic codes over Fpk + vFpk + v2Fpk +...+ vrFpk . Gulf Journal of Mathematics. 4 (4),(2016). | |
dc.relation.references | [9] Liu Y., Shi M., Sol´e P. Quadratic Residue Codes over Fp + vFp + v 2Fp. International Workshop on the Arithmetic of Finite Fields. 204–211 (2014). | |
dc.relation.references | [10] Qian J.-F., Zhang L.-N., Zhu S.-X. Cyclic Codes over Fp + uFp +...+ uk−1Fp. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. E88-A (3), 795–797 (2005). | |
dc.relation.references | [11] Aydin N., Ray-Chaudhuri D. K. Quasi-cyclic codes over Z4 and some new binary codes. IEEE Transactions on Information Theory. 48 (7), 2065–2069 (2002). | |
dc.relation.references | [12] Gao J., Shi M., Wu T., Fu F.-W. On double cyclic codes over Z4. Finite Fields and Their Applications. 39, 233–250 (2016). | |
dc.relation.references | [13] Melakhessou A., Guenda K., Gulliver T. A., Shi M., Sol´e P. On Codes over Fq + vFq + v 2Fq. Journal of Applied Mathematics and Computing. 57 (1), 375–391 (2018). | |
dc.relation.references | [14] Grassl M. Bounds on the minimum distance of linear codes and quantum codes. Online available at www.codetables.de. Accessed on 2021/08/20 (2019). | |
dc.relation.referencesen | [1] Chatouh K., Guenda K., Aaron Gulliver T. New classes of codes over Rq,p,m = Zpm[u1, u2, · · · , uq]/hu2 i = 0, uiuj − ujuii and their applications. Computational and Applied Mathematics. 39, 152 (2020). | |
dc.relation.referencesen | [2] Yildiz B., Karadeniz S. Linear codes over Z4 +uZ4: MacWilliams identities, projections, formally self-dual codes. Finite Fields and Their Applications. 27, 24–40 (2014). | |
dc.relation.referencesen | [3] Klemm M. Selbstduale Codes ¨uber dem Ring der ganzen Zahlen modulo 4. Archiv der Mathematik. 53 (2), 201–207 (1989). | |
dc.relation.referencesen | [4] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol´e P. The Z4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory. 40 (2), 301–319 (1994). | |
dc.relation.referencesen | [5] Hammons A. R., Kumar P. V., Calderbank A. R., Sloane N. J. A., Sol´e P. On the apparent duality of the Kerdock and Preparata codes. International Symposium on Applied Algebra, Algebraic Algorithms and Error–Correcting Codes. 13–24 (1993). | |
dc.relation.referencesen | [6] Bustomi, Santika A. P., Suprijanto D. Linear codes over the ring Z4 + uZ4 + vZ4 + wZ4 + uvZ4 + uwZ4 + vwZ4 + uvwZ4. Preprint arXiv:1904.11117v1 (2019). | |
dc.relation.referencesen | [7] Li P., Guo X., Zhu S., Kai X. Some results on linear codes over the ring Z4 + uZ4 + vZ4 + uvZ4. Journal of Applied Mathematics and Computing. 54 (1–2), 307-324 (2017). | |
dc.relation.referencesen | [8] Ndiaye O. One cyclic codes over Fpk + vFpk + v2Fpk +...+ vrFpk . Gulf Journal of Mathematics. 4 (4),(2016). | |
dc.relation.referencesen | [9] Liu Y., Shi M., Sol´e P. Quadratic Residue Codes over Fp + vFp + v 2Fp. International Workshop on the Arithmetic of Finite Fields. 204–211 (2014). | |
dc.relation.referencesen | [10] Qian J.-F., Zhang L.-N., Zhu S.-X. Cyclic Codes over Fp + uFp +...+ uk−1Fp. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. E88-A (3), 795–797 (2005). | |
dc.relation.referencesen | [11] Aydin N., Ray-Chaudhuri D. K. Quasi-cyclic codes over Z4 and some new binary codes. IEEE Transactions on Information Theory. 48 (7), 2065–2069 (2002). | |
dc.relation.referencesen | [12] Gao J., Shi M., Wu T., Fu F.-W. On double cyclic codes over Z4. Finite Fields and Their Applications. 39, 233–250 (2016). | |
dc.relation.referencesen | [13] Melakhessou A., Guenda K., Gulliver T. A., Shi M., Sol´e P. On Codes over Fq + vFq + v 2Fq. Journal of Applied Mathematics and Computing. 57 (1), 375–391 (2018). | |
dc.relation.referencesen | [14] Grassl M. Bounds on the minimum distance of linear codes and quantum codes. Online available at www.codetables.de. Accessed on 2021/08/20 (2019). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | коди над кільцями | |
dc.subject | ідемпотенти | |
dc.subject | відображення Грея | |
dc.subject | codes over the rings | |
dc.subject | idempotents | |
dc.subject | Gray map | |
dc.title | Construction of linear codes over Σ=P4s=0 vs5A4 | |
dc.title.alternative | Побудова лінійних кодів над Σ=P4s=0 vs5A4 | |
dc.type | Article |
Files
License bundle
1 - 1 of 1