Intracranial hemorrhage segmentation using neural network and Riesz fractional order derivative-based texture enhancement
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Lviv Politechnic Publishing House
Abstract
У статті досліджується застосування архітектури U-Net для сегментації внутрішньочерепних крововиливів, зосереджуючись на підвищенні точності сегментації шляхом включення методів покращення текстури на основі похідних дробового порядку Ріса. Дослідження починається з проведення огляду суміжних робіт у галузі сегментації комп’ютерної томографії (КТ). На цьому етапі також вибирається відповідний набір даних. Спочатку він використовувався для навчання U-Net, однієї з широко поширених моделей глибокого навчання в області сегментації медичних зображень. Навчання здійснюється за паралельним алгоритмом на основі технології CUDA. Отримані результати порівнюють із встановленою базовою моделлю для цього набору даних, оцінюючи точність сегментації за допомогою коефіцієнтів Жаккара та Дайса. Згодом досліджується техніка покращення текстури, заснована на дробових похідних Ріса, і застосована до зображень комп’ютерної томографії з вибраного набору даних. Ця техніка спрямована на захоплення дрібніших деталей і тонких текстур, які можуть сприяти підвищенню точності сегментації. Потім модель U-Net перенавчається та перевіряється на зображеннях із покращеною текстурою, а результати експерименту аналізуються. Дослідження виявило помітне підвищення точності, обгрунтованого за допомогою коефіцієнтів Жаккара та Дайса. Це демонструює потенціал запропонованої методики покращення текстури для уточнення сегментації внутрішньочерепного крововиливу.
This paper explores the application of the U-Net architecture for intracranial hemorrhage segmentation, with a focus on enhancing segmentation accuracy through the incorporation of texture enhancement techniques based on the Riesz fractional order derivatives. The study begins by conducting a review of related works in the field of computed tomography (CT) scan segmentation. At this stage also a suitable dataset is selected. Initially it is used to train the UNet, one of the widely adopted deep learning models in the field of medical image segmentation. Training is performed using parallel algorithm based on CUDA technology. The obtained results are compared with the established baseline for this dataset, assessing segmentation accuracy using the Jaccard and Dice coefficients. Subsequently, the study investigates a texture enhancement technique based on the Riesz fractional order derivatives, applied to the CT-scan images from the dataset. This technique aims to capture finer details and subtle textures that may contribute to improved segmentation accuracy. The U-Net model is then retrained and validated on the texture-enhanced images, and the experimental results are analyzed. The study reveals a modest yet notable enhancement in accuracy, as measured by the Jaccard and Dice coefficients, demonstrating the potential of the proposed texture enhancement technique in refining intracranial hemorrhage segmentation.
This paper explores the application of the U-Net architecture for intracranial hemorrhage segmentation, with a focus on enhancing segmentation accuracy through the incorporation of texture enhancement techniques based on the Riesz fractional order derivatives. The study begins by conducting a review of related works in the field of computed tomography (CT) scan segmentation. At this stage also a suitable dataset is selected. Initially it is used to train the UNet, one of the widely adopted deep learning models in the field of medical image segmentation. Training is performed using parallel algorithm based on CUDA technology. The obtained results are compared with the established baseline for this dataset, assessing segmentation accuracy using the Jaccard and Dice coefficients. Subsequently, the study investigates a texture enhancement technique based on the Riesz fractional order derivatives, applied to the CT-scan images from the dataset. This technique aims to capture finer details and subtle textures that may contribute to improved segmentation accuracy. The U-Net model is then retrained and validated on the texture-enhanced images, and the experimental results are analyzed. The study reveals a modest yet notable enhancement in accuracy, as measured by the Jaccard and Dice coefficients, demonstrating the potential of the proposed texture enhancement technique in refining intracranial hemorrhage segmentation.
Description
Citation
Manokhin D. Intracranial hemorrhage segmentation using neural network and Riesz fractional order derivative-based texture enhancement / Denys Manokhin, Yaroslav Sokolovskyy // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 1. — P. 1–16.