Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane

dc.citation.epage44
dc.citation.issue1
dc.citation.spage35
dc.contributor.affiliationIvane Javakhishvili Tbilisi State University
dc.contributor.authorMukbaniani, Omar
dc.contributor.authorAneli, Jimsher
dc.contributor.authorTatrishvili, Tamara
dc.contributor.authorMarkarashvili, Eliza
dc.contributor.authorLondaridze, Levan
dc.contributor.authorKvinikadze, Nikoloz
dc.contributor.authorKakalashvili, Lizi
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T10:29:42Z
dc.date.available2024-02-09T10:29:42Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСьогодні отримання екологічно чистих деревинних композиційних матеріалів є одним із головних завдань. Карбамідо-, феноло- і меламіноформальдегідні смоли, які використовують сьогодні, шкідливі для організму людини і мають тривалу дію. Тому заміна цих та інших смол безпечними в’яжучими речовинами є однією з головних проблем. Метою цієї роботи було отримання та дослідження екологічно безпечних деревинно-полімерних композитів (декінгів) на основі нової екологічно безпечної в'яжучої речовини, посилюючого агенту тріетокси(вінілфенетил)силану та стирену (in-situ полімеризація) з наповнювачем із соснової тирси та гідроксидом алюмінію як антиоксидантом. На основі тріетокси (вінілфенетил)силану, стирену та тирси методом гарячого пресування за різних температур і співвідношень використовуваних компонентів у присутності антиоксиданту отримано деревинно-полімерні композити – декінги. Виконано морфологічне дослідження поверхні декінгів за допомогою оптичної мікроскопії, сканувальної електронної мікроскопії (СЕМ) та енергодисперсійного рентгенівського мікроаналізу. Визначено водопоглинання, температуру розм'якшення за Віка, міцність на згин і ударну в'язкість. Крім того, з використанням тирси як імпрегнувального та армувального агента та гідроксиду алюмінію як антиоксиданту отримано деревинно-полімерні композити (ДПК) методом гарячого пресування за різних температур. Морфологічне дослідження поверхні отриманих композитів здійснювали методами оптичної мікроскопії та сканувальної електронної мікроскопії, енергодисперсійного рентгенівського мікроаналізу. Водопоглинання композитів, межу текучості за вигину, ударну в’язкість і температуру розм’якшення визначали за методом Віка. Отримані композити характеризуються вищими фізико-механічними властивостями та водопоглинанням.
dc.description.abstractToday obtaining environmentally friendly wood composite materials is one of the main tasks. The urea-, phenol-, and melamine-formaldehyde resins used today are harmful to the human body and have a long-lasting effect. Therefore, replacing these and other resins with safe binders is one of the major problems. The aim of the work was to obtain and research ecologically safe wood polymer composites-deckings based on a new environmentally safe binder and a reinforcing agent triethoxy(vinylphenethyl)silane and styrene (in-situ polymerization) with a pine sawdust filler and aluminum hydroxide as an antioxidant. On the basis of triethoxy(vinylphenethyl)silane, styrene, and sawdust, the wood polymer composites – deckings have been obtained by hot pressing method at different temperatures and ratios of used components in the presence of antioxidant. For deckings surface, a morphological examination using optical microscopy, scanning electron microscopic (SEM), and energy-dispersive X-ray roentgenographic microanalysis were performed. Water absorption, softening temperature (Vicat), strength on bending, and impact viscosity were determined. Besides, using sawdust as coupling and reinforcement agents, and aluminum hydroxide as an antioxidant, wood polymer composites (WPC) were obtained by hot pressing at different temperatures. For the obtained composites, the morphological study of the surface was carried out using optical microscopy and scanning electron microscopy, energy dispersive X-ray microanalysis. Water absorption of compo¬sites, bending yield stress, impact strength, and softening temperature were determined by the Vicat method. The obtained composites were characterized by higher phy-sicomechanical properties and water absorption.
dc.format.extent35-44
dc.format.pages10
dc.identifier.citationWood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane / Omar Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili, Levan Londaridze, Nikoloz Kvinikadze, Lizi Kakalashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 35–44.
dc.identifier.citationenWood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane / Omar Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili, Levan Londaridze, Nikoloz Kvinikadze, Lizi Kakalashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 35–44.
dc.identifier.doidoi.org/10.23939/chcht17.01.035
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61227
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (17), 2023
dc.relation.references[1] Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5
dc.relation.references[2] Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011
dc.relation.references[3] Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre–PP Composites: Wood Powder and Pelletized Wood Fibres – A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029
dc.relation.references[4] Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8
dc.relation.references[5] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225
dc.relation.references[6] Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030
dc.relation.references[7] Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094
dc.relation.references[8] Hou, W.; Wang, Q. Wetting Behavior of a SiO2–Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033
dc.relation.references[9] Tianbin, W.; Yangchuan, K. Preparation of Silica–PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002
dc.relation.references[10] Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035
dc.relation.references[11] Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133
dc.relation.references[12] Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030
dc.relation.references[13] Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245
dc.relation.references[14] Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6
dc.relation.references[15] Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003
dc.relation.references[16] Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J
dc.relation.references[17] Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Сopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030
dc.relation.references[18] Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055
dc.relation.references[19] Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010
dc.relation.references[20] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7
dc.relation.references[21] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.references[22] Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p
dc.relation.references[23] Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075
dc.relation.references[24] Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021
dc.relation.references[25] Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf
dc.relation.references[26] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016.
dc.relation.references[27] Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019.
dc.relation.references[28] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.references[29] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201
dc.relation.references[30] Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141
dc.relation.references[31] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html
dc.relation.references[32] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
dc.relation.references[33] Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057
dc.relation.references[34] Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y
dc.relation.references[35] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94.
dc.relation.referencesen[1] Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5
dc.relation.referencesen[2] Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011
dc.relation.referencesen[3] Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre–PP Composites: Wood Powder and Pelletized Wood Fibres – A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029
dc.relation.referencesen[4] Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8
dc.relation.referencesen[5] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225
dc.relation.referencesen[6] Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030
dc.relation.referencesen[7] Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094
dc.relation.referencesen[8] Hou, W.; Wang, Q. Wetting Behavior of a SiO2–Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033
dc.relation.referencesen[9] Tianbin, W.; Yangchuan, K. Preparation of Silica–PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002
dc.relation.referencesen[10] Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035
dc.relation.referencesen[11] Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133
dc.relation.referencesen[12] Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030
dc.relation.referencesen[13] Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245
dc.relation.referencesen[14] Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6
dc.relation.referencesen[15] Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003
dc.relation.referencesen[16] Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J
dc.relation.referencesen[17] Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Sopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030
dc.relation.referencesen[18] Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055
dc.relation.referencesen[19] Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010
dc.relation.referencesen[20] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7
dc.relation.referencesen[21] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073
dc.relation.referencesen[22] Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p
dc.relation.referencesen[23] Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075
dc.relation.referencesen[24] Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021
dc.relation.referencesen[25] Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf
dc.relation.referencesen[26] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016.
dc.relation.referencesen[27] Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019.
dc.relation.referencesen[28] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
dc.relation.referencesen[29] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201
dc.relation.referencesen[30] Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141
dc.relation.referencesen[31] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html
dc.relation.referencesen[32] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965
dc.relation.referencesen[33] Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057
dc.relation.referencesen[34] Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y
dc.relation.referencesen[35] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94.
dc.relation.urihttps://doi.org/10.1016/S0964-8305(02)00052-5
dc.relation.urihttps://doi.org/10.1016/j.polymertesting.2003.10.011
dc.relation.urihttps://doi.org/10.1016/j.compscitech.2008.09.029
dc.relation.urihttps://doi.org/10.1016/S0266-3538(02)00248-8
dc.relation.urihttps://doi.org/10.23939/chcht04.03.225
dc.relation.urihttps://doi.org/10.1016/j.jiec.2010.03.030
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2010.09.094
dc.relation.urihttps://doi.org/10.1016/j.jcis.2007.07.033
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2005.08.002
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.01.035
dc.relation.urihttps://doi.org/10.1002/app.33133
dc.relation.urihttps://doi.org/10.1016/j.jphotochem.2004.05.030
dc.relation.urihttps://doi.org/10.1002/app.29245
dc.relation.urihttps://doi.org/10.1016/S0040-6090(03)00033-6
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2003.10.003
dc.relation.urihttps://doi.org/10.1039/B906754J
dc.relation.urihttps://doi.org/10.1016/j.polymer.2004.05.030
dc.relation.urihttps://doi.org/10.1016/j.polymer.2007.04.055
dc.relation.urihttps://doi.org/10.1016/j.eurpolymj.2004.12.010
dc.relation.urihttps://doi.org/10.1007/s10019-002-0157-7
dc.relation.urihttps://doi.org/10.23939/chcht07.01.073
dc.relation.urihttps://doi.org/10.1021/ma902213p
dc.relation.urihttps://doi.org/10.1016/j.polymer.2009.04.075
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2011.05.021
dc.relation.urihttps://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf
dc.relation.urihttps://doi.org/10.4236/wjm.2015.53004
dc.relation.urihttps://doi.org/10.23939/chcht11.02.201
dc.relation.urihttps://doi.org/10.23939/chcht07.02.141
dc.relation.urihttps://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html
dc.relation.urihttps://doi.org/10.1002/pat.4965
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2005.05.057
dc.relation.urihttps://doi.org/10.1021/ef050155y
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Mukbaniani O., Aneli J., Tatrishvili T., Markarashvili E., Londaridze L., Kvinikadze N., Kakalashvili L, 2023
dc.subjectдеревина
dc.subjectполімерний композит
dc.subjectдекінг
dc.subjectантипірен
dc.subjectоптична мікроскопія
dc.subjectwood
dc.subjectpolymer composite
dc.subjectdecking
dc.subjectantipyrene
dc.subjectoptical microscopy
dc.titleWood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane
dc.title.alternativeДеревинно-полімерний композит на основі стирену і тріетокси(вінілфенетил)силану
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n1_Mukbaniani_O-Wood_Polymer_Composite_35-44.pdf
Size:
1006.09 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n1_Mukbaniani_O-Wood_Polymer_Composite_35-44__COVER.png
Size:
322.02 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: