Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane
dc.citation.epage | 44 | |
dc.citation.issue | 1 | |
dc.citation.spage | 35 | |
dc.contributor.affiliation | Ivane Javakhishvili Tbilisi State University | |
dc.contributor.author | Mukbaniani, Omar | |
dc.contributor.author | Aneli, Jimsher | |
dc.contributor.author | Tatrishvili, Tamara | |
dc.contributor.author | Markarashvili, Eliza | |
dc.contributor.author | Londaridze, Levan | |
dc.contributor.author | Kvinikadze, Nikoloz | |
dc.contributor.author | Kakalashvili, Lizi | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:42Z | |
dc.date.available | 2024-02-09T10:29:42Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Сьогодні отримання екологічно чистих деревинних композиційних матеріалів є одним із головних завдань. Карбамідо-, феноло- і меламіноформальдегідні смоли, які використовують сьогодні, шкідливі для організму людини і мають тривалу дію. Тому заміна цих та інших смол безпечними в’яжучими речовинами є однією з головних проблем. Метою цієї роботи було отримання та дослідження екологічно безпечних деревинно-полімерних композитів (декінгів) на основі нової екологічно безпечної в'яжучої речовини, посилюючого агенту тріетокси(вінілфенетил)силану та стирену (in-situ полімеризація) з наповнювачем із соснової тирси та гідроксидом алюмінію як антиоксидантом. На основі тріетокси (вінілфенетил)силану, стирену та тирси методом гарячого пресування за різних температур і співвідношень використовуваних компонентів у присутності антиоксиданту отримано деревинно-полімерні композити – декінги. Виконано морфологічне дослідження поверхні декінгів за допомогою оптичної мікроскопії, сканувальної електронної мікроскопії (СЕМ) та енергодисперсійного рентгенівського мікроаналізу. Визначено водопоглинання, температуру розм'якшення за Віка, міцність на згин і ударну в'язкість. Крім того, з використанням тирси як імпрегнувального та армувального агента та гідроксиду алюмінію як антиоксиданту отримано деревинно-полімерні композити (ДПК) методом гарячого пресування за різних температур. Морфологічне дослідження поверхні отриманих композитів здійснювали методами оптичної мікроскопії та сканувальної електронної мікроскопії, енергодисперсійного рентгенівського мікроаналізу. Водопоглинання композитів, межу текучості за вигину, ударну в’язкість і температуру розм’якшення визначали за методом Віка. Отримані композити характеризуються вищими фізико-механічними властивостями та водопоглинанням. | |
dc.description.abstract | Today obtaining environmentally friendly wood composite materials is one of the main tasks. The urea-, phenol-, and melamine-formaldehyde resins used today are harmful to the human body and have a long-lasting effect. Therefore, replacing these and other resins with safe binders is one of the major problems. The aim of the work was to obtain and research ecologically safe wood polymer composites-deckings based on a new environmentally safe binder and a reinforcing agent triethoxy(vinylphenethyl)silane and styrene (in-situ polymerization) with a pine sawdust filler and aluminum hydroxide as an antioxidant. On the basis of triethoxy(vinylphenethyl)silane, styrene, and sawdust, the wood polymer composites – deckings have been obtained by hot pressing method at different temperatures and ratios of used components in the presence of antioxidant. For deckings surface, a morphological examination using optical microscopy, scanning electron microscopic (SEM), and energy-dispersive X-ray roentgenographic microanalysis were performed. Water absorption, softening temperature (Vicat), strength on bending, and impact viscosity were determined. Besides, using sawdust as coupling and reinforcement agents, and aluminum hydroxide as an antioxidant, wood polymer composites (WPC) were obtained by hot pressing at different temperatures. For the obtained composites, the morphological study of the surface was carried out using optical microscopy and scanning electron microscopy, energy dispersive X-ray microanalysis. Water absorption of compo¬sites, bending yield stress, impact strength, and softening temperature were determined by the Vicat method. The obtained composites were characterized by higher phy-sicomechanical properties and water absorption. | |
dc.format.extent | 35-44 | |
dc.format.pages | 10 | |
dc.identifier.citation | Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane / Omar Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili, Levan Londaridze, Nikoloz Kvinikadze, Lizi Kakalashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 35–44. | |
dc.identifier.citationen | Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane / Omar Mukbaniani, Jimsher Aneli, Tamara Tatrishvili, Eliza Markarashvili, Levan Londaridze, Nikoloz Kvinikadze, Lizi Kakalashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 35–44. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.035 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61227 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5 | |
dc.relation.references | [2] Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011 | |
dc.relation.references | [3] Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre–PP Composites: Wood Powder and Pelletized Wood Fibres – A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029 | |
dc.relation.references | [4] Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8 | |
dc.relation.references | [5] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225 | |
dc.relation.references | [6] Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030 | |
dc.relation.references | [7] Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094 | |
dc.relation.references | [8] Hou, W.; Wang, Q. Wetting Behavior of a SiO2–Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033 | |
dc.relation.references | [9] Tianbin, W.; Yangchuan, K. Preparation of Silica–PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002 | |
dc.relation.references | [10] Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035 | |
dc.relation.references | [11] Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133 | |
dc.relation.references | [12] Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030 | |
dc.relation.references | [13] Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245 | |
dc.relation.references | [14] Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6 | |
dc.relation.references | [15] Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003 | |
dc.relation.references | [16] Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J | |
dc.relation.references | [17] Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Сopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030 | |
dc.relation.references | [18] Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055 | |
dc.relation.references | [19] Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010 | |
dc.relation.references | [20] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.references | [21] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.references | [22] Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p | |
dc.relation.references | [23] Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075 | |
dc.relation.references | [24] Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021 | |
dc.relation.references | [25] Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf | |
dc.relation.references | [26] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016. | |
dc.relation.references | [27] Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019. | |
dc.relation.references | [28] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004 | |
dc.relation.references | [29] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.references | [30] Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141 | |
dc.relation.references | [31] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html | |
dc.relation.references | [32] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965 | |
dc.relation.references | [33] Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057 | |
dc.relation.references | [34] Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y | |
dc.relation.references | [35] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94. | |
dc.relation.referencesen | [1] Morrell, J.J. Wood-Based Building Components: What Have We Learned? Int. Biodeterior. Biodegradation 2002, 49, 253-258. https://doi.org/10.1016/S0964-8305(02)00052-5 | |
dc.relation.referencesen | [2] Hristov, V.N.; Lach, R.; Grellmann, W. Impact Fracture Behavior of Modified Polypropylene/Wood Fiber Composites. Polym. Test. 2004, 23, 581-589. https://doi.org/10.1016/j.polymertesting.2003.10.011 | |
dc.relation.referencesen | [3] Nygard, P.; Tanem, B.S.; Karlsen, T.; Brachet, P.; Leinsvang, B. Extrusion-Based Wood Fibre–PP Composites: Wood Powder and Pelletized Wood Fibres – A Comparative Study. Compos. Sci. Technol. 2008, 68, 3418-3424. https://doi.org/10.1016/j.compscitech.2008.09.029 | |
dc.relation.referencesen | [4] Colom, X.; Carrasco, F.; Pagès, P.; Cañavate, J. Effect of Different Treatments on the Interface of HDPE/Lignocellulosic Fiber Composites. Compos. Sci. Technol. 2003, 63, 161-169. https://doi.org/10.1016/S0266-3538(02)00248-8 | |
dc.relation.referencesen | [5] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225 | |
dc.relation.referencesen | [6] Park, J.T.; Seo, J.A.; Ahn, S.H.; Kim, J.H.; Kang, S.W. Surface Modification of Silica Nanoparticles with Hydrophilic Polymers. J. Ind. Eng. Chem. 2010, 16, 517-522. https://doi.org/10.1016/j.jiec.2010.03.030 | |
dc.relation.referencesen | [7] Sun, X.L.; Fan, Z.P.; Zhang, L.D.; Wang, L.; Wei, Z.J.; Wang, X.Q.; Liu, W.L. Superhydrophobicity of Silica Nanoparticles Modified with Polystyrene. Appl. Surf. Sci. 2011, 257, 2308-2312. https://doi.org/10.1016/j.apsusc.2010.09.094 | |
dc.relation.referencesen | [8] Hou, W.; Wang, Q. Wetting Behavior of a SiO2–Polystyrene Nanocomposite Surface. J. Colloid Interface Sci. 2007, 316, 206-209. https://doi.org/10.1016/j.jcis.2007.07.033 | |
dc.relation.referencesen | [9] Tianbin, W.; Yangchuan, K. Preparation of Silica–PS Composite Particles and their Application in PET. Eur. Polym. J. 2006, 42, 274-285. https://doi.org/10.1016/j.eurpolymj.2005.08.002 | |
dc.relation.referencesen | [10] Morales, G.; van Grieken, R.; Martín, A.; Martínez, F. Sulfonated Polystyrene-Modified Mesoporous Organosilicas for Acid-Catalyzed Processes. Chem. Eng. J. 2010, 161, 388-396. https://doi.org/10.1016/j.cej.2010.01.035 | |
dc.relation.referencesen | [11] Dey, P.; Rajora, V.K.; Jassal, M.; Agrawal, A.K. A Novel Route for Synthesis of Temperature Responsive Nanoparticles. J. Appl. Polym. Sci. 2011, 120, 335-344. https://doi.org/10.1002/app.33133 | |
dc.relation.referencesen | [12] Liu, P.; Su, Z. Preparation of Polystyrene Grafted Silica Nanoparticles by Two-Steps UV Induced Reaction. J. Photochem. Photobiol. A. 2004, 167, 237-240. https://doi.org/10.1016/j.jphotochem.2004.05.030 | |
dc.relation.referencesen | [13] Pérez, L.D.; López, J.F.; Orozco, V.H.; Kyu, T.; López, B.L. Effect of the Chemical Characteristics of Mesoporous Silica MCM‐41 on Morphological, Thermal, and Rheological Properties of Composites Based on Polystyrene. J. Appl. Polym. Sci. 2009, 111, 2229-2237. https://doi.org/10.1002/app.29245 | |
dc.relation.referencesen | [14] Maas, J.H.; Cohen Stuart, M.A.; Sieval, A.B.; Zuilhof, H.; Sudhölter, E.J.R. Preparation of Polystyrene Brushes by Reaction of Terminal Vinyl Groups on Silicon and Silica Surfaces. Thin Solid Films 2003, 426, 135-139. https://doi.org/10.1016/S0040-6090(03)00033-6 | |
dc.relation.referencesen | [15] Liu, P.; Liu, W.M.; Xue, Q.J. In Situ Radical Transfer Addition Polymerization of Styrene from Silica Nanoparticles. Eur. Polym. J. 2004, 40, 267-271. https://doi.org/10.1016/j.eurpolymj.2003.10.003 | |
dc.relation.referencesen | [16] Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boue, F. Polystyrene Grafting from Silica Nanoparticles via Nitroxide-Mediated Polymerization (NMP): Synthesis and SANS Analysis with the Contrast Variation Method. Soft Matter. 2009, 5, 3741-3753. https://doi.org/10.1039/B906754J | |
dc.relation.referencesen | [17] Laruelle, G.; Parvole, J.; Francois, J.; Billon, L. Block Sopolymer Rafted-Silica Particles: A Core/Double Shell Hybrid Inorganic/Organic Material. Polymer 2004, 45, 5013-5020. https://doi.org/10.1016/j.polymer.2004.05.030 | |
dc.relation.referencesen | [18] Liu, C.-H.; Pan, C.-Y. Grafting Polystyrene onto Silica Nanoparticles via RAFT Polymerization. Polymer 2007, 48, 3679-3685. https://doi.org/10.1016/j.polymer.2007.04.055 | |
dc.relation.referencesen | [19] Wang, Y.-P.; Pei, X.-W.; He, X.-Y.; Yuan, K. Synthesis Of Well-Defined, Polymer-Grafted Silica Nanoparticles via Reverse ATRP. Eur. Polym. J. 2005, 41, 1326-1332. https://doi.org/10.1016/j.eurpolymj.2004.12.010 | |
dc.relation.referencesen | [20] Bratychak, M.; Bratychak, M. Jr.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Etherate. Mater. Res. Innov. 2002, 6, 24-30. https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.referencesen | [21] Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. Monomethacrylate Derivative of ED-24 Epoxy Resin and its Application. Chem. Chem. Technol. 2013, 7, 73-77. https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.referencesen | [22] Hubner, E.; Allgaier, J.; Meyer, M.; Stellbrink, J.; Pyckhout-Hintzen, W.; Richter, D. Synthesis of Polymer/Silica Hybrid Nanoparticles Using Anionic Polymerization Techniques. Macromolecules 2009, 43, 856-867. https://doi.org/10.1021/ma902213p | |
dc.relation.referencesen | [23] Nguyen, M.N.; Bressy, C.; Margaillan, A. Synthesis of Novel Random and Block Copolymers of tert-Butyldimethylsilyl Methacrylate and Methyl Methacrylate by RAFT Polymerization. Polymer 2009, 50, 3086-3094. https://doi.org/10.1016/j.polymer.2009.04.075 | |
dc.relation.referencesen | [24] Agudelo, N.A.; Perez, L.D.; Lopez. B.L. A Novel Method for the Synthesis of Polystyrene-Graft-Silica Particles Using Random Copolymers Based on Styrene and Triethoxyvinylsilane. Appl. Surf. Sci. 2011, 257, 8581-8586. https://doi.org/10.1016/j.apsusc.2011.05.021 | |
dc.relation.referencesen | [25] Kvinikadze, N.; Londaridze, L; Zedgenidze, A.; Dzidziguri, D.; Mukbaniani, O. Wood Polymer Composites on the Basis of New Coupling Agent. Abstracts of Communications of 7th International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, 2021, 27-30 July, p. 60. https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf | |
dc.relation.referencesen | [26] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Akron University, USA, 2016. | |
dc.relation.referencesen | [27] Essential Testing of Flexural Properties of Plastics and Polymers. ISO 178, 2019. | |
dc.relation.referencesen | [28] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004 | |
dc.relation.referencesen | [29] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani. O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.referencesen | [30] Aneli, J.; Mukbaniani, O.; Markarashvili, E.; Zaikov, G.; Klodzinska, E. Polymer Composites on the Basis of Epoxy Resin with Mineral Fillers Modified by Tetraetoxysilane. Chem. Chem. Technol. 2013, 67, 141-145. https://doi.org/10.23939/chcht07.02.141 | |
dc.relation.referencesen | [31] Mukbaniani, O.; Brostow, W.; Hagg Lobland, H.E.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Dzidziguri, D.; Buzaladze, G. Composites Containing Bamboo with Different Binders. Pure Appl. Chem. 2018, 90, 1001-1009. https://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html | |
dc.relation.referencesen | [32] Mukbaniani, O.; Brostow, W.; Aneli, J.; Markarashvili, E. Tatrishvili, T.; Buzaladze, G.; Parulava, G. Sawdust Based Composites. Polym. Adv. Technol. 2020, 31, 2504-2511. https://doi.org/10.1002/pat.4965 | |
dc.relation.referencesen | [33] Fernández-Jiménez, A.; Palomo. A. Mid-Infrared Spectroscopic Studies of Alkali-Activated Fly Ash Structure. Microporous Mesoporous Mater. 2005, 86, 207-214. https://doi.org/10.1016/j.micromeso.2005.05.057 | |
dc.relation.referencesen | [34] Mukherjee, S.; Srivastava, S.K. Minerals Transformations in Northeastern Region Coals of India on Heat Treatment. Energy Fuels 2006, 20, 1089-1096. https://doi.org/10.1021/ef050155y | |
dc.relation.referencesen | [35] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Ed. 2012, 34, 69-94. | |
dc.relation.uri | https://doi.org/10.1016/S0964-8305(02)00052-5 | |
dc.relation.uri | https://doi.org/10.1016/j.polymertesting.2003.10.011 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2008.09.029 | |
dc.relation.uri | https://doi.org/10.1016/S0266-3538(02)00248-8 | |
dc.relation.uri | https://doi.org/10.23939/chcht04.03.225 | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2010.03.030 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2010.09.094 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2007.07.033 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2005.08.002 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2010.01.035 | |
dc.relation.uri | https://doi.org/10.1002/app.33133 | |
dc.relation.uri | https://doi.org/10.1016/j.jphotochem.2004.05.030 | |
dc.relation.uri | https://doi.org/10.1002/app.29245 | |
dc.relation.uri | https://doi.org/10.1016/S0040-6090(03)00033-6 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2003.10.003 | |
dc.relation.uri | https://doi.org/10.1039/B906754J | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2004.05.030 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2007.04.055 | |
dc.relation.uri | https://doi.org/10.1016/j.eurpolymj.2004.12.010 | |
dc.relation.uri | https://doi.org/10.1007/s10019-002-0157-7 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.01.073 | |
dc.relation.uri | https://doi.org/10.1021/ma902213p | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2009.04.075 | |
dc.relation.uri | https://doi.org/10.1016/j.apsusc.2011.05.021 | |
dc.relation.uri | https://icsp7.tsu.ge/data/file_db/icsp7/abstracts_21.07icsp7.pdf | |
dc.relation.uri | https://doi.org/10.4236/wjm.2015.53004 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.uri | https://doi.org/10.23939/chcht07.02.141 | |
dc.relation.uri | https://www.degruyter.com/document/doi/10.1515/pac-2017-0804/html | |
dc.relation.uri | https://doi.org/10.1002/pat.4965 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2005.05.057 | |
dc.relation.uri | https://doi.org/10.1021/ef050155y | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Mukbaniani O., Aneli J., Tatrishvili T., Markarashvili E., Londaridze L., Kvinikadze N., Kakalashvili L, 2023 | |
dc.subject | деревина | |
dc.subject | полімерний композит | |
dc.subject | декінг | |
dc.subject | антипірен | |
dc.subject | оптична мікроскопія | |
dc.subject | wood | |
dc.subject | polymer composite | |
dc.subject | decking | |
dc.subject | antipyrene | |
dc.subject | optical microscopy | |
dc.title | Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane | |
dc.title.alternative | Деревинно-полімерний композит на основі стирену і тріетокси(вінілфенетил)силану | |
dc.type | Article |
Files
License bundle
1 - 1 of 1