A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco

dc.citation.epage185
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage171
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationУніверситет Чуайба Дуккалі
dc.contributor.affiliationHassan II University of Casablanca
dc.contributor.affiliationChouaib Doukkali University
dc.contributor.authorКуідере, А.
dc.contributor.authorЕлхія, М.
dc.contributor.authorБалатіф, О.
dc.contributor.authorKouidere, A.
dc.contributor.authorElhia, M.
dc.contributor.authorBalatif, O.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:49Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractСтаном на 2 березня 2020 року МОЗ Марокко оголосило про перший випадок захворювання на COVID-19 у місті Касабланка у марокканського туриста, який прибув з Італії. Вірус SARS-COV-2 поширився по всьому Королівству Марокко. У цій статті досліджується просторово-часова передача пандемiї COVID-19 у Королівстві Марокко, застосовуючи SIWIHR диференціальне рівняння з частинними похідними для опису поширення пандемії COVID-19 у Марокко як приклад. Основна мета статті — охарактеризувати оптимальний порядок контролю поширення пандемії COVID-19 шляхом прийняття стратегії вакцинації, метою якої є зменшення кількості сприйнятливих та інфікованих осіб без щеплення та максимізація кількості одужаних осіб шляхом зменшення вартості вакцинації з використанням однієї з вакцин, схвалених Всесвітньою організація охорони здоров’я. Для цього доводиться існування пари керування. Дається опис оптимальних керувань у термінах стану та допоміжних функцій. Накінець, подано чисельне моделювання даних, які пов’язані з передачею пандемії COVID-19. Чисельні результати подано для ілюстрації ефективності прийнятого підходу.
dc.description.abstractOn March 2, 2020, the Moroccan Ministry of Health announced the first case of COVID-19 in the city of Casablanca for a Moroccan tourist who came from Italy. The SARS-COV2 virus has spread throughout the Kingdom of Morocco. In this paper, we study the spatiotemporal transmission of the COVID-19 virus in the Kingdom of Morocco. By supporting a SIWIHR partial differential equation for the spread of the COVID-19 pandemic in Morocco as a case study. Our main goal is to characterize the optimum order of controlling the spread of the COVID-19 pandemic by adopting a vaccination strategy, the aim of which is to reduce the number of susceptible and infected individuals without vaccination and to maximize the recovered individuals by reducing the cost of vaccination using one of the vaccines approved by the World Health Organization. To do this, we proved the existence of a pair of control. It provides a description of the optimal controls in terms of state and auxiliary functions. Finally, we provided numerical simulations of data related to the transmission of the COVID-19 pandemic. Numerical results are presented to illustrate the effectiveness of the adopted approach.
dc.format.extent171-185
dc.format.pages15
dc.identifier.citationKouidere A. A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco / A. Kouidere, M. Elhia, O. Balatif // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 171–185.
dc.identifier.citationenKouidere A. A spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco / A. Kouidere, M. Elhia, O. Balatif // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 171–185.
dc.identifier.doi10.23939/mmc2023.01.171
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63488
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Coronavirus update (live), https://www.worldometers.info/coronavirus/#countries, accessed: 2020-11-28 (2020).
dc.relation.references[2] Coronavirus update (live), https://www.worldometers.info/coronavirus/#countries, accessed: 2021-10-07 (2021).
dc.relation.references[3] Elhia M., Chokri K., Alkama M. Optimal control and free optimal time problem for a COVID-19 model with saturated vaccination function. Communications in Mathematical Biology and Neuroscience. 2021, 35 (2021).
dc.relation.references[4] Kouidere A., Khajji B., El Bhih A., Balatif O., Rachik M. A mathematical modeling with optimal control strategy of transmission of COVID-19 pandemic virus. Communications in Mathematical Biology and Neuroscience. 2020, 24 (2020).
dc.relation.references[5] Kada D., Kouidere A., Balatif O., Rachik M., Labriji E. H. Mathematical modeling of the spread of COVID-19 among different age groups in Morocco: Optimal control approach for intervention strategies. Chaos, Solitons & Fractals. 141, 110437 (2020).
dc.relation.references[6] Elhia M., Boujallal L., Alkama M., Balatif O., Rachik M. Set-valued control approach applied to a COVID19 model with screening and saturated treatment function. Complexity. 2020, 9501028 (2020).
dc.relation.references[7] Kouidere A., Youssoufi L. E., Ferjouchia H., Balatif O., Rachik M. Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness. Chaos, Solitons & Fractals. 145, 110777 (2021).
dc.relation.references[8] Bentout S., Tridane A., Djilali S., Touaoula T. M. Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alexandria Engineering Journal. 60 (1), 401–411 (2020).
dc.relation.references[9] Liu Z., Magal P., Seydi O., Webb G. A COVID-19 epidemic model with latency period. Infectious Disease Modelling. 5, 323–337 (2020).
dc.relation.references[10] El Bhih A., Benfatah Y., Kouidere A., Rachik M. A discrete mathematical modeling of transmission of COVID-19 pandemic using optimal control. Communications in Mathematical Biology and Neuroscience. 2020, 75 (2020).
dc.relation.references[11] Kouidere A., Kada D., Balatif O., Rachik M., Naim M. Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and cost-effectiveness. Chaos, Solitons & Fractals. 142, 110438 (2020).
dc.relation.references[12] Castilho C., Gondim J. A., Marchesin M., Sabeti M. Assessing the efficiency of different control strategies for the COVID-19 epidemic. Electronic Journal of Differential Equations. 2020 (64), 1–17 (2020).
dc.relation.references[13] Khajji B., Kouidere A., Elhia M., Balatif O., Rachik M. Fractional optimal control problem for an agestructured model of COVID-19 transmission. Chaos, Solitons & Fractals. 143, 110625 (2021).
dc.relation.references[14] Atangana A., Araz S. ˙I. Modeling and forecasting the spread of Covid-19 with stochastic and deterministic approaches: Africa and Europe. Advances in Difference Equations. 2021, 57 (2021).
dc.relation.references[15] Peter O. J., Shaikh A. S., Ibrahim M. O., Nisar K. S., Baleanu D., Khan I., Abioye A. I. Analysis and dynamics of fractional order mathematical model of COVID-19 in NIGERIA using Atangana–Baleanu operator. Computers, Materials & Continua. 66 (2), 1823–1848 (2020).
dc.relation.references[16] Alshomrani A. S., Ullah M. Z., Baleanu D. Caputo SIR model for COVID-19 under optimized fractional order. Advances in Difference Equations. 2021, 185 (2021).
dc.relation.references[17] Akg¨ul A., Ahmed N., Raza A., Iqbal Z., Rafiq M., Baleanu D., Rehman M. A.-u. New applications related to COVID-19. Results in Physics. 20, 103663 (2021).
dc.relation.references[18] Baleanu D., Jajarmi A., Mohammadi H., Rezapour S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons & Fractals. 134, 109705 (2020).
dc.relation.references[19] Vrabie I. I. Co-Semigroups and applications. Elsevier (2003).
dc.relation.references[20] Barbu V. Mathematical Methods in Optimization of Differential Systems. Mathematics and Its Applications. Vol. 310. Springer Dordrecht (1994).
dc.relation.references[21] Smoller J. Shock Waves and Reaction–Diffusion Equations. Grundlehren der mathematischen Wissenschaften. Vol. 258. Springer New York, NY (1994).
dc.relation.references[22] Brezis H., Ciarlet P. G., Lions J. L. Analyse fonctionnelle: th´eorie et applications. Vol. 91. Dunod Paris(1999).
dc.relation.referencesen[1] Coronavirus update (live), https://www.worldometers.info/coronavirus/#countries, accessed: 2020-11-28 (2020).
dc.relation.referencesen[2] Coronavirus update (live), https://www.worldometers.info/coronavirus/#countries, accessed: 2021-10-07 (2021).
dc.relation.referencesen[3] Elhia M., Chokri K., Alkama M. Optimal control and free optimal time problem for a COVID-19 model with saturated vaccination function. Communications in Mathematical Biology and Neuroscience. 2021, 35 (2021).
dc.relation.referencesen[4] Kouidere A., Khajji B., El Bhih A., Balatif O., Rachik M. A mathematical modeling with optimal control strategy of transmission of COVID-19 pandemic virus. Communications in Mathematical Biology and Neuroscience. 2020, 24 (2020).
dc.relation.referencesen[5] Kada D., Kouidere A., Balatif O., Rachik M., Labriji E. H. Mathematical modeling of the spread of COVID-19 among different age groups in Morocco: Optimal control approach for intervention strategies. Chaos, Solitons & Fractals. 141, 110437 (2020).
dc.relation.referencesen[6] Elhia M., Boujallal L., Alkama M., Balatif O., Rachik M. Set-valued control approach applied to a COVID19 model with screening and saturated treatment function. Complexity. 2020, 9501028 (2020).
dc.relation.referencesen[7] Kouidere A., Youssoufi L. E., Ferjouchia H., Balatif O., Rachik M. Optimal control of mathematical modeling of the spread of the COVID-19 pandemic with highlighting the negative impact of quarantine on diabetics people with cost-effectiveness. Chaos, Solitons & Fractals. 145, 110777 (2021).
dc.relation.referencesen[8] Bentout S., Tridane A., Djilali S., Touaoula T. M. Age-structured modeling of COVID-19 epidemic in the USA, UAE and Algeria. Alexandria Engineering Journal. 60 (1), 401–411 (2020).
dc.relation.referencesen[9] Liu Z., Magal P., Seydi O., Webb G. A COVID-19 epidemic model with latency period. Infectious Disease Modelling. 5, 323–337 (2020).
dc.relation.referencesen[10] El Bhih A., Benfatah Y., Kouidere A., Rachik M. A discrete mathematical modeling of transmission of COVID-19 pandemic using optimal control. Communications in Mathematical Biology and Neuroscience. 2020, 75 (2020).
dc.relation.referencesen[11] Kouidere A., Kada D., Balatif O., Rachik M., Naim M. Optimal control approach of a mathematical modeling with multiple delays of the negative impact of delays in applying preventive precautions against the spread of the COVID-19 pandemic with a case study of Brazil and cost-effectiveness. Chaos, Solitons & Fractals. 142, 110438 (2020).
dc.relation.referencesen[12] Castilho C., Gondim J. A., Marchesin M., Sabeti M. Assessing the efficiency of different control strategies for the COVID-19 epidemic. Electronic Journal of Differential Equations. 2020 (64), 1–17 (2020).
dc.relation.referencesen[13] Khajji B., Kouidere A., Elhia M., Balatif O., Rachik M. Fractional optimal control problem for an agestructured model of COVID-19 transmission. Chaos, Solitons & Fractals. 143, 110625 (2021).
dc.relation.referencesen[14] Atangana A., Araz S. ˙I. Modeling and forecasting the spread of Covid-19 with stochastic and deterministic approaches: Africa and Europe. Advances in Difference Equations. 2021, 57 (2021).
dc.relation.referencesen[15] Peter O. J., Shaikh A. S., Ibrahim M. O., Nisar K. S., Baleanu D., Khan I., Abioye A. I. Analysis and dynamics of fractional order mathematical model of COVID-19 in NIGERIA using Atangana–Baleanu operator. Computers, Materials & Continua. 66 (2), 1823–1848 (2020).
dc.relation.referencesen[16] Alshomrani A. S., Ullah M. Z., Baleanu D. Caputo SIR model for COVID-19 under optimized fractional order. Advances in Difference Equations. 2021, 185 (2021).
dc.relation.referencesen[17] Akg¨ul A., Ahmed N., Raza A., Iqbal Z., Rafiq M., Baleanu D., Rehman M. A.-u. New applications related to COVID-19. Results in Physics. 20, 103663 (2021).
dc.relation.referencesen[18] Baleanu D., Jajarmi A., Mohammadi H., Rezapour S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos, Solitons & Fractals. 134, 109705 (2020).
dc.relation.referencesen[19] Vrabie I. I. Co-Semigroups and applications. Elsevier (2003).
dc.relation.referencesen[20] Barbu V. Mathematical Methods in Optimization of Differential Systems. Mathematics and Its Applications. Vol. 310. Springer Dordrecht (1994).
dc.relation.referencesen[21] Smoller J. Shock Waves and Reaction–Diffusion Equations. Grundlehren der mathematischen Wissenschaften. Vol. 258. Springer New York, NY (1994).
dc.relation.referencesen[22] Brezis H., Ciarlet P. G., Lions J. L. Analyse fonctionnelle: th´eorie et applications. Vol. 91. Dunod Paris(1999).
dc.relation.urihttps://www.worldometers.info/coronavirus/#countries
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectепідеміологічне моделювання
dc.subjectновий коронавірус
dc.subjectДРЧП
dc.subjectоптимальне керування
dc.subjectчисельне моделювання
dc.subjectepidemiological modeling
dc.subjectnovel coronavirus
dc.subjectPDE
dc.subjectoptimal control
dc.subjectnumerical simulation
dc.titleA spatiotemporal spread of COVID-19 pandemic with vaccination optimal control strategy: A case study in Morocco
dc.title.alternativeПросторово-часове поширення пандемії COVID-19 із оптимальною стратегією контролю вакцинації: приклад Марокко
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Kouidere_A-A_spatiotemporal_spread_171-185.pdf
Size:
1.81 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Kouidere_A-A_spatiotemporal_spread_171-185__COVER.png
Size:
445.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: