Construction of a velocity model of shear wave for complexly structured geological medium using neural network (by example of data of the South Saspian basin)
dc.citation.epage | 80 | |
dc.citation.issue | 1 (28) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 71 | |
dc.contributor.affiliation | Інститут геології та геофізики АНА | |
dc.contributor.affiliation | Institute of Geology and Geophysics of ANAS | |
dc.contributor.author | Агаєв, Х. Б. | |
dc.contributor.author | Кулієв, Р. Г. | |
dc.contributor.author | Якубова, Ш. З. | |
dc.contributor.author | Aghayev, Kh. B. | |
dc.contributor.author | Kuliyev, R. H. | |
dc.contributor.author | Yaqubova, Sh. Z. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-20T07:49:32Z | |
dc.date.available | 2023-06-20T07:49:32Z | |
dc.date.created | 2020-02-25 | |
dc.date.issued | 2020-02-25 | |
dc.description.abstract | Мета. Розроблення методу прогнозування дво(три)вимірної швидкісної моделі середовища поперечної хвилі. Досліджено складноструктурне геологічне середовище на основі геофізичних і геологічних даних із застосуванням штучної нейронної мережі. Метод передбачає побудову та використання моделей середовища за даними геофізичних досліджень свердловин, сейсморозвідки та інших наземних геофізичних методів. На відміну від існуючих методів, у пропонованому використовують також додаткові дані про середовище: про термодинамічний стан середовища, стратиграфічну приуроченість відкладень, літологію порід, розподіл кластерів даних, фізичні властивості середовища тощо. Згідно з методом, спочатку будують одновимірні моделі за різними властивостями середовища на основі даних комплексу геофізичних досліджень свердловин. Потім за сукупністю моделей нейронну мережу вивчають для прогнозування швидкості поперечної хвилі, відтак будують дво(три)вимірні моделі середовища за результатами наземних геофізичних досліджень. З використанням сукупності цих моделей прогнозують дво(три)вимірну швидкісну модель поперечної хвилі. Результати. Із застосуванням методу спрогнозовано швидкісну модель поперечної хвилі для складноструктурного геологічного середовища Південно-Каспійського басейну. Наукова новизна. Збільшенням кількості типів використаних даних забезпечується підвищення точності прогнозування моделі середовища. Практична цінність. Підвищення ефективності сейсморозвідки під час визначення нафтогазонасиченості, пружного геодинамічного стану та інших фізичних властивостей геологічного середовища. | |
dc.description.abstract | Object. Development of a method for predicting a two-three dimensional velocity model of a medium by using a shear wave. Complexly structured geological medium is studied on the basis of geophysical and geological data using an artificial neural network. Method. It provides the construction and use of medium models according to geophysical well logging data and other terrestrial geophysical methods. In contrast to existing methods, the proposed method also uses additional data on the medium. They include the thermodynamic state of the medium, stratigraphic confinement of deposits, rock lithology, distribution of data clusters, physical properties of the medium etc. According to the method, one-dimensional models are first constructed on various properties of the medium based on data of complex of well logging. Then, the neural network is studied to predict the shear wave velocity on a set of models. Subsequently, two-three-dimensional models of the medium are constructed according to the results of terresterial geophysical studies. Two-three dimensional velocity model of a shear wave is predicted by using a complex of these models studied by a neural network. Results. Velocity model of shear wave is predicted for complexly structured geological medium of the South Caspian Basin using the method. Scientific novelty. It is possible to increase the accuracy and resolution of prediction the medium model by increasing the number of types of data used. Practical value. Improving the efficiency of seismic exploration in determining oil and gas saturation, elastic geodynamic state and other physical properties of the geological medium. | |
dc.format.extent | 71-80 | |
dc.format.pages | 10 | |
dc.identifier.citation | Aghayev Kh. B. Construction of a velocity model of shear wave for complexly structured geological medium using neural network (by example of data of the South Saspian basin) / Kh. B. Aghayev, R. H. Kuliyev, Sh. Z. Yaqubova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 1 (28). — P. 71–80. | |
dc.identifier.citationen | Aghayev Kh. B. Construction of a velocity model of shear wave for complexly structured geological medium using neural network (by example of data of the South Saspian basin) / Kh. B. Aghayev, R. H. Kuliyev, Sh. Z. Yaqubova // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 1 (28). — P. 71–80. | |
dc.identifier.doi | doi.org/10.23939/jgd2020.01.071 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59293 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 1 (28), 2020 | |
dc.relation.ispartof | Geodynamics, 1 (28), 2020 | |
dc.relation.references | Aghayev, Kh. B. (2012). Prediction of the shear waves | |
dc.relation.references | velocities model accoding to the data of Geophysical | |
dc.relation.references | researches of wells and seismic-survey using neural | |
dc.relation.references | networks. Geoinformatika, 4(44), 46–52. (in Russian). | |
dc.relation.references | Aghayev, Kh. B. (2013). The use of cluster analysis for | |
dc.relation.references | disassembling a geological section accoding to well | |
dc.relation.references | logging data. Karotajnik. Tver. 5, 3–11. (in Russian). | |
dc.relation.references | Bouska, J., & Johnston, R. (2005). The first 3D/4-C | |
dc.relation.references | ocean bottom seismic surveys in the Caspian | |
dc.relation.references | Sea: Acquisition design and processing | |
dc.relation.references | strategy. The Leading Edge, 24(9), 910–921. | |
dc.relation.references | http://dx.doi.org/10.1190/1.2056392. | |
dc.relation.references | Burger, H. R., Sheehan, A. F., and Jones, C. H. (2006). | |
dc.relation.references | Introduction to Applied Geophysics: Exploring the | |
dc.relation.references | shallow subsurface W.W. Norton & Co., New York, 554 pp. | |
dc.relation.references | Castagna, J., Backus, M. (1993). Offset-dependent | |
dc.relation.references | reflectivity: theory and practice of AVO analysis. | |
dc.relation.references | Investigations in Geophysics Series, Soc. Expl. | |
dc.relation.references | Geophysics, January, vol. 8, 348 p. | |
dc.relation.references | Castagna, J. P., Batzle, M. L. and Eastwood, R. L. | |
dc.relation.references | (1985). Relationships between compressionalwave and shear-wave velocity in clastic silicate | |
dc.relation.references | rocks. Geophysics, Vol. 50(4), 571–581. | |
dc.relation.references | http://dx.doi.org/10.1190/1.1441933. | |
dc.relation.references | Chashkov, A. V. and Valery, V. M. (2011). Use of the | |
dc.relation.references | Cluster Analysis and Artificial Neural Network | |
dc.relation.references | Technology for Log Data Interpretation. Journal of | |
dc.relation.references | Siberian Federal University. Engineering & | |
dc.relation.references | Technologies, 4(4), 453–462. http://elib.sfukras.ru/handle/2311/2485. | |
dc.relation.references | Eberhart, P. D., Han, D. H., Zoback, M. D. (1989). | |
dc.relation.references | Empirical relationships among seismic velocity, | |
dc.relation.references | effective pressure, porosity, and clay content in | |
dc.relation.references | sandstone, Geophysics, 54, 1, pp. 82–89. | |
dc.relation.references | https://doi.org/10.1190/1.1442580. | |
dc.relation.references | Ellis, D. V., & Singer, J. M. (2007). Well logging for | |
dc.relation.references | earth scientists (Vol. 692). Dordrecht: Springer. | |
dc.relation.references | https://doi.org/10.1007/978-1-4020-4602-5. | |
dc.relation.references | Eskandari, H., Rezaee, R. and Mohammadnia, M. | |
dc.relation.references | (2004). Application of Multiple Regression and | |
dc.relation.references | Artificial Neural Network Techniques to Predict | |
dc.relation.references | Shear Wave Velocity from Well Log Data for a | |
dc.relation.references | Carbonate Reservoir, South-West Iran. Cseg Recorder, 42–48. | |
dc.relation.references | Garotta, R. J. (2000). Transverse waves: from registration | |
dc.relation.references | to interpretation. Short Course of Lectures for | |
dc.relation.references | Higher Education Institutions, Society of | |
dc.relation.references | Geophysicists-Scouts (SEG), 226 p. | |
dc.relation.references | Gholami, R., Moradzadeh, A., Rasouli, V., and Hanachi, J. (2014). Shear Wave Velocity Prediction | |
dc.relation.references | Using Seismic Attributes and Well Log Data, Acta | |
dc.relation.references | Geophys. Vol. 62, 818–848. doi: 10.2478/s11600-013-0200-7. | |
dc.relation.references | Guliev, H. H., and Aghaev, Kh. B. (2010). The seismic | |
dc.relation.references | sections modeling accounting the stressed state of the | |
dc.relation.references | medium. Geodynamics, No. 1 (9), p. 81–86. (in | |
dc.relation.references | Russian). | |
dc.relation.references | Guliyev, H., Aghayev, Kh., Mehraliyev, F. and | |
dc.relation.references | Ahmadova, E. (2019). Determination of the physical | |
dc.relation.references | properties of complexly constructed media using nearsurface crosswell method. Visnyk of Taras Shevchenko | |
dc.relation.references | National University of Kyiv: Geology. 3(86). 13–20. | |
dc.relation.references | http://doi.org/10.17721/1728-2713.86.02 | |
dc.relation.references | Guliyev, H. H., Aghayev, Kh. B. and Shirinov, N. M. | |
dc.relation.references | (2010). The Research of the Influence of the Pressure | |
dc.relation.references | to the Values of Elastic Parameters of Geological | |
dc.relation.references | Medium on the Basis of Seismic and Well Data. | |
dc.relation.references | Visnyk of Taras Shevchenko National University of | |
dc.relation.references | Kyiv: Geology, 50. 10–16. | |
dc.relation.references | Guliyev, H. H., Aghayev, Kh. B. and Sultanova G. A. | |
dc.relation.references | (2019). Determination of stress in the geological | |
dc.relation.references | medium on the basis of well data using acoustoelastic | |
dc.relation.references | correlations. International Journal of Geophysics 41(6):173–182. | |
dc.relation.references | Habib Akhundi, Mohammad Ghafoori, and GholamReza Lashkaripour. (2014). Prediction of Shear | |
dc.relation.references | Wave Velocity Using Artificial Neural Network | |
dc.relation.references | Technique, Multiple Regression and Petrophysical | |
dc.relation.references | Data: A Case Study in Asmari Reservoir (SW Iran) | |
dc.relation.references | Open Journal of Geology, 4, 303–313. | |
dc.relation.references | Krief, M., Garat, J., Stellingwerff, J., and Ventre J. | |
dc.relation.references | (1990). A petrophysical interpretation using the | |
dc.relation.references | velocities of P and S waves (full-waveform sonic), | |
dc.relation.references | The Log Analyst 31, 8, 355–369. | |
dc.relation.references | Meltem, Akan. (2016). Processing and Interpretation of | |
dc.relation.references | Three-Component Vertical Seismic Profile Data, | |
dc.relation.references | Ross Sea, Antarctica. Graduate Theses & NonTheses, 64, 90 p. https://digitalcommons.mtech.edu › viewcontent. | |
dc.relation.references | Poulton, M.M. (2002). Neural networks as an intelligence amplification tool: A review of applications. | |
dc.relation.references | Geophysics 67(3), 979–993. doi: 10.1190/1.1484539. | |
dc.relation.references | Puzyrev N. N., Trigubov A. V., Brodov L. Yu., | |
dc.relation.references | Vedernikov G. V., Lebedev K. A. (1985). Seismic | |
dc.relation.references | exploration by the method of transverse and | |
dc.relation.references | converted waves / M.: Nedra, 277 p. (in Russian). | |
dc.relation.references | Robert, R. Stewart, James E. Gaiser, R. James Brown, | |
dc.relation.references | and Don C. Lawton. (2002). Converted-wave seismic | |
dc.relation.references | exploration: applications. Geophysics 68(1): 40–57. | |
dc.relation.references | doi: 10.1190/1.1543193. | |
dc.relation.references | Saeed Parvizi, Riyaz Rharrat, Mohammad R. ASEF, | |
dc.relation.references | Bijan Janangiry and Abdolnabi Hashemi. (2015). | |
dc.relation.references | Prediction of the Shear Wave Velocity from | |
dc.relation.references | Compressional Wave Velocity for Gachsaran | |
dc.relation.references | Formation. Acta Geophysicavol. 63(5), 1231–1243. doi: 10.1515/acgeo-2015-0048. | |
dc.relation.references | Schön, J. H. (2015). Physical properties of rocks: | |
dc.relation.references | Fundamentals and principles of petrophysics. | |
dc.relation.references | Elsevier. https://trove.nla.gov.au/work/9281433 | |
dc.relation.references | Shahoo Maleki, Ali Moradzadeh, Reza Ghavami Riabi, | |
dc.relation.references | Raoof Gholami, and Farhad Sadeghzadeh. (2014). | |
dc.relation.references | Prediction of shear wave velocity using empirical | |
dc.relation.references | correlations and artificial intelligence methods. | |
dc.relation.references | NRIAG Journal of Astronomy and Geophysics 3, 70–81. doi:10.316/j.nrjag.2014.05.001. | |
dc.relation.references | Veeken, P. C. H., and Silva, Da M. (2004). Seismic | |
dc.relation.references | inversion methods and some of their constraints: First | |
dc.relation.references | Break, 22, 47–70. doi: 10.3997/1365-2397.2004011. | |
dc.relation.references | Volarovich, M. P., Bayuk, E. I., Levykin A. I., and | |
dc.relation.references | Tomashevskaya, I. S. (1974). Physico-mechanical | |
dc.relation.references | properties of rocks and minerals at high pressures. | |
dc.relation.references | Publishing House “Science”, 1–123 p. (in Russian). | |
dc.relation.references | Voskresensky, Yu. N. (2001). The study of changes in | |
dc.relation.references | the amplitudes of seismic reflections for the search | |
dc.relation.references | and exploration of hydrocarbon deposits. Russian | |
dc.relation.references | State University of Oil and Gas named after THEM. | |
dc.relation.references | Gubkin. Moscow: Ministry of Education of the | |
dc.relation.references | Russian Federation. 69 p. (in Russian). | |
dc.relation.references | Yilmaz, Oz. (2001). Seismic data analysis: processing, | |
dc.relation.references | inversion and interpretation of seismic data. Society | |
dc.relation.references | of Exploration Geopysicists. Investigations in | |
dc.relation.references | geophysics, 2, Tulsa, SEG, 2027 | |
dc.relation.referencesen | Aghayev, Kh. B. (2012). Prediction of the shear waves | |
dc.relation.referencesen | velocities model accoding to the data of Geophysical | |
dc.relation.referencesen | researches of wells and seismic-survey using neural | |
dc.relation.referencesen | networks. Geoinformatika, 4(44), 46–52. (in Russian). | |
dc.relation.referencesen | Aghayev, Kh. B. (2013). The use of cluster analysis for | |
dc.relation.referencesen | disassembling a geological section accoding to well | |
dc.relation.referencesen | logging data. Karotajnik. Tver. 5, 3–11. (in Russian). | |
dc.relation.referencesen | Bouska, J., & Johnston, R. (2005). The first 3D/4-C | |
dc.relation.referencesen | ocean bottom seismic surveys in the Caspian | |
dc.relation.referencesen | Sea: Acquisition design and processing | |
dc.relation.referencesen | strategy. The Leading Edge, 24(9), 910–921. | |
dc.relation.referencesen | http://dx.doi.org/10.1190/1.2056392. | |
dc.relation.referencesen | Burger, H. R., Sheehan, A. F., and Jones, C. H. (2006). | |
dc.relation.referencesen | Introduction to Applied Geophysics: Exploring the | |
dc.relation.referencesen | shallow subsurface W.W. Norton & Co., New York, 554 pp. | |
dc.relation.referencesen | Castagna, J., Backus, M. (1993). Offset-dependent | |
dc.relation.referencesen | reflectivity: theory and practice of AVO analysis. | |
dc.relation.referencesen | Investigations in Geophysics Series, Soc. Expl. | |
dc.relation.referencesen | Geophysics, January, vol. 8, 348 p. | |
dc.relation.referencesen | Castagna, J. P., Batzle, M. L. and Eastwood, R. L. | |
dc.relation.referencesen | (1985). Relationships between compressionalwave and shear-wave velocity in clastic silicate | |
dc.relation.referencesen | rocks. Geophysics, Vol. 50(4), 571–581. | |
dc.relation.referencesen | http://dx.doi.org/10.1190/1.1441933. | |
dc.relation.referencesen | Chashkov, A. V. and Valery, V. M. (2011). Use of the | |
dc.relation.referencesen | Cluster Analysis and Artificial Neural Network | |
dc.relation.referencesen | Technology for Log Data Interpretation. Journal of | |
dc.relation.referencesen | Siberian Federal University. Engineering & | |
dc.relation.referencesen | Technologies, 4(4), 453–462. http://elib.sfukras.ru/handle/2311/2485. | |
dc.relation.referencesen | Eberhart, P. D., Han, D. H., Zoback, M. D. (1989). | |
dc.relation.referencesen | Empirical relationships among seismic velocity, | |
dc.relation.referencesen | effective pressure, porosity, and clay content in | |
dc.relation.referencesen | sandstone, Geophysics, 54, 1, pp. 82–89. | |
dc.relation.referencesen | https://doi.org/10.1190/1.1442580. | |
dc.relation.referencesen | Ellis, D. V., & Singer, J. M. (2007). Well logging for | |
dc.relation.referencesen | earth scientists (Vol. 692). Dordrecht: Springer. | |
dc.relation.referencesen | https://doi.org/10.1007/978-1-4020-4602-5. | |
dc.relation.referencesen | Eskandari, H., Rezaee, R. and Mohammadnia, M. | |
dc.relation.referencesen | (2004). Application of Multiple Regression and | |
dc.relation.referencesen | Artificial Neural Network Techniques to Predict | |
dc.relation.referencesen | Shear Wave Velocity from Well Log Data for a | |
dc.relation.referencesen | Carbonate Reservoir, South-West Iran. Cseg Recorder, 42–48. | |
dc.relation.referencesen | Garotta, R. J. (2000). Transverse waves: from registration | |
dc.relation.referencesen | to interpretation. Short Course of Lectures for | |
dc.relation.referencesen | Higher Education Institutions, Society of | |
dc.relation.referencesen | Geophysicists-Scouts (SEG), 226 p. | |
dc.relation.referencesen | Gholami, R., Moradzadeh, A., Rasouli, V., and Hanachi, J. (2014). Shear Wave Velocity Prediction | |
dc.relation.referencesen | Using Seismic Attributes and Well Log Data, Acta | |
dc.relation.referencesen | Geophys. Vol. 62, 818–848. doi: 10.2478/s11600-013-0200-7. | |
dc.relation.referencesen | Guliev, H. H., and Aghaev, Kh. B. (2010). The seismic | |
dc.relation.referencesen | sections modeling accounting the stressed state of the | |
dc.relation.referencesen | medium. Geodynamics, No. 1 (9), p. 81–86. (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Guliyev, H., Aghayev, Kh., Mehraliyev, F. and | |
dc.relation.referencesen | Ahmadova, E. (2019). Determination of the physical | |
dc.relation.referencesen | properties of complexly constructed media using nearsurface crosswell method. Visnyk of Taras Shevchenko | |
dc.relation.referencesen | National University of Kyiv: Geology. 3(86). 13–20. | |
dc.relation.referencesen | http://doi.org/10.17721/1728-2713.86.02 | |
dc.relation.referencesen | Guliyev, H. H., Aghayev, Kh. B. and Shirinov, N. M. | |
dc.relation.referencesen | (2010). The Research of the Influence of the Pressure | |
dc.relation.referencesen | to the Values of Elastic Parameters of Geological | |
dc.relation.referencesen | Medium on the Basis of Seismic and Well Data. | |
dc.relation.referencesen | Visnyk of Taras Shevchenko National University of | |
dc.relation.referencesen | Kyiv: Geology, 50. 10–16. | |
dc.relation.referencesen | Guliyev, H. H., Aghayev, Kh. B. and Sultanova G. A. | |
dc.relation.referencesen | (2019). Determination of stress in the geological | |
dc.relation.referencesen | medium on the basis of well data using acoustoelastic | |
dc.relation.referencesen | correlations. International Journal of Geophysics 41(6):173–182. | |
dc.relation.referencesen | Habib Akhundi, Mohammad Ghafoori, and GholamReza Lashkaripour. (2014). Prediction of Shear | |
dc.relation.referencesen | Wave Velocity Using Artificial Neural Network | |
dc.relation.referencesen | Technique, Multiple Regression and Petrophysical | |
dc.relation.referencesen | Data: A Case Study in Asmari Reservoir (SW Iran) | |
dc.relation.referencesen | Open Journal of Geology, 4, 303–313. | |
dc.relation.referencesen | Krief, M., Garat, J., Stellingwerff, J., and Ventre J. | |
dc.relation.referencesen | (1990). A petrophysical interpretation using the | |
dc.relation.referencesen | velocities of P and S waves (full-waveform sonic), | |
dc.relation.referencesen | The Log Analyst 31, 8, 355–369. | |
dc.relation.referencesen | Meltem, Akan. (2016). Processing and Interpretation of | |
dc.relation.referencesen | Three-Component Vertical Seismic Profile Data, | |
dc.relation.referencesen | Ross Sea, Antarctica. Graduate Theses & NonTheses, 64, 90 p. https://digitalcommons.mtech.edu › viewcontent. | |
dc.relation.referencesen | Poulton, M.M. (2002). Neural networks as an intelligence amplification tool: A review of applications. | |
dc.relation.referencesen | Geophysics 67(3), 979–993. doi: 10.1190/1.1484539. | |
dc.relation.referencesen | Puzyrev N. N., Trigubov A. V., Brodov L. Yu., | |
dc.relation.referencesen | Vedernikov G. V., Lebedev K. A. (1985). Seismic | |
dc.relation.referencesen | exploration by the method of transverse and | |
dc.relation.referencesen | converted waves, M., Nedra, 277 p. (in Russian). | |
dc.relation.referencesen | Robert, R. Stewart, James E. Gaiser, R. James Brown, | |
dc.relation.referencesen | and Don C. Lawton. (2002). Converted-wave seismic | |
dc.relation.referencesen | exploration: applications. Geophysics 68(1): 40–57. | |
dc.relation.referencesen | doi: 10.1190/1.1543193. | |
dc.relation.referencesen | Saeed Parvizi, Riyaz Rharrat, Mohammad R. ASEF, | |
dc.relation.referencesen | Bijan Janangiry and Abdolnabi Hashemi. (2015). | |
dc.relation.referencesen | Prediction of the Shear Wave Velocity from | |
dc.relation.referencesen | Compressional Wave Velocity for Gachsaran | |
dc.relation.referencesen | Formation. Acta Geophysicavol. 63(5), 1231–1243. doi: 10.1515/acgeo-2015-0048. | |
dc.relation.referencesen | Schön, J. H. (2015). Physical properties of rocks: | |
dc.relation.referencesen | Fundamentals and principles of petrophysics. | |
dc.relation.referencesen | Elsevier. https://trove.nla.gov.au/work/9281433 | |
dc.relation.referencesen | Shahoo Maleki, Ali Moradzadeh, Reza Ghavami Riabi, | |
dc.relation.referencesen | Raoof Gholami, and Farhad Sadeghzadeh. (2014). | |
dc.relation.referencesen | Prediction of shear wave velocity using empirical | |
dc.relation.referencesen | correlations and artificial intelligence methods. | |
dc.relation.referencesen | NRIAG Journal of Astronomy and Geophysics 3, 70–81. doi:10.316/j.nrjag.2014.05.001. | |
dc.relation.referencesen | Veeken, P. C. H., and Silva, Da M. (2004). Seismic | |
dc.relation.referencesen | inversion methods and some of their constraints: First | |
dc.relation.referencesen | Break, 22, 47–70. doi: 10.3997/1365-2397.2004011. | |
dc.relation.referencesen | Volarovich, M. P., Bayuk, E. I., Levykin A. I., and | |
dc.relation.referencesen | Tomashevskaya, I. S. (1974). Physico-mechanical | |
dc.relation.referencesen | properties of rocks and minerals at high pressures. | |
dc.relation.referencesen | Publishing House "Science", 1–123 p. (in Russian). | |
dc.relation.referencesen | Voskresensky, Yu. N. (2001). The study of changes in | |
dc.relation.referencesen | the amplitudes of seismic reflections for the search | |
dc.relation.referencesen | and exploration of hydrocarbon deposits. Russian | |
dc.relation.referencesen | State University of Oil and Gas named after THEM. | |
dc.relation.referencesen | Gubkin. Moscow: Ministry of Education of the | |
dc.relation.referencesen | Russian Federation. 69 p. (in Russian). | |
dc.relation.referencesen | Yilmaz, Oz. (2001). Seismic data analysis: processing, | |
dc.relation.referencesen | inversion and interpretation of seismic data. Society | |
dc.relation.referencesen | of Exploration Geopysicists. Investigations in | |
dc.relation.referencesen | geophysics, 2, Tulsa, SEG, 2027 | |
dc.relation.uri | http://dx.doi.org/10.1190/1.2056392 | |
dc.relation.uri | http://dx.doi.org/10.1190/1.1441933 | |
dc.relation.uri | http://elib.sfukras.ru/handle/2311/2485 | |
dc.relation.uri | https://doi.org/10.1190/1.1442580 | |
dc.relation.uri | https://doi.org/10.1007/978-1-4020-4602-5 | |
dc.relation.uri | http://doi.org/10.17721/1728-2713.86.02 | |
dc.relation.uri | https://digitalcommons.mtech.edu | |
dc.relation.uri | https://trove.nla.gov.au/work/9281433 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2020 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Aghayev Kh. B., Kuliyev R. H., Yaqubova Sh. Z. | |
dc.subject | сейсмічна розвідка | |
dc.subject | хвиля тиску і зсуву | |
dc.subject | сейсмічна швидкість | |
dc.subject | середня модель | |
dc.subject | передбачення | |
dc.subject | нейронна мережа | |
dc.subject | seismic exploration | |
dc.subject | pressure and shear wave | |
dc.subject | seismic velocity | |
dc.subject | medium model | |
dc.subject | prediction | |
dc.subject | neural network | |
dc.subject.udc | 550.8.056 | |
dc.title | Construction of a velocity model of shear wave for complexly structured geological medium using neural network (by example of data of the South Saspian basin) | |
dc.title.alternative | Побудова швидкісної моделі поперечної хвилі для складноструктурного геологічного середовища з використанням нейронної мережі (на прикладі даних Південно-Каспійського басейну) | |
dc.type | Article |
Files
License bundle
1 - 1 of 1