Basic concepts of dynamic recurrent neural networks development

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Commission of Motorization and Energetics in Agriculture

Abstract

In this work formulated relevance, set out an analytical review of existing approaches to the research recurrent neural networks (RNN) and defined precondition appearance a new direction in the field neuroinformatics – reservoir computing. Shows generalized classification neural network (NN) and briefly described main types dynamics and modes RNN. Described topology, structure and features of the model NN with different nonlinear functions and with possible areas of progress. Characterized and systematized well-known learning methods RNN and conducted their classification by categories. Determined the place RNN with unsteady dynamics of other classes RNN. Deals with the main parameters and terminology, which used to describe models RNN. Briefly described practical implementation recurrent neural networks in different areas natural sciences and humanities, and outlines and systematized main deficiencies and the advantages of using different RNN. The systematization of known recurrent neural networks and methods of their study is performed and on this basis the generalized classification of neural networks was proposed.

Description

Keywords

recurrent neural network, dynamic system, learning algorithms, reservoir computing, unsteady dynamics

Citation

Boyko N. Basic concepts of dynamic recurrent neural networks development / N. Boyko, P. Pobereyko // Econtechmod : an international quarterly journal on economics in technology, new technologies and modelling processes. – Lublin ; Rzeszow, 2016. – Volum 5, number 2. – P. 63–68. – Bibliography: 20 titles.

Endorsement

Review

Supplemented By

Referenced By