A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement
dc.citation.epage | 202 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 187 | |
dc.contributor.affiliation | Університет Каді Айяда | |
dc.contributor.affiliation | Перший університет Хасана в Сеттаті | |
dc.contributor.affiliation | Cadi Ayyad University | |
dc.contributor.affiliation | Hassan First University of Settat | |
dc.contributor.author | Ала, Х. | |
dc.contributor.author | Ала, Н. Е. | |
dc.contributor.author | Акель, Ф. | |
dc.contributor.author | Лефрайх, Х. | |
dc.contributor.author | Alaa, H. | |
dc.contributor.author | Alaa, N. E. | |
dc.contributor.author | Aqel, F. | |
dc.contributor.author | Lefraich, H. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T11:14:20Z | |
dc.date.created | 2022-02-28 | |
dc.date.issued | 2022-02-28 | |
dc.description.abstract | Мета цієї роботи — запропонувати новий чисельний підхід до відновлення зображення та покращення його контрасту на основі реакційно-дифузійної моделі (модель Грея–Скотта). Для видалення шумів використовується методика граткових рівнянь Больцмана. Зазвичай вона використовується в експериментах з гідродинаміки. Оскільки рух пікселів можна порівняти з рухом рідини, представлена методика демонструє хорошу продуктивність при обробці зашумлених зображень. Ефективність та продуктивність запропонованого алгоритму перевірено на кількох чисельних експериментах. | |
dc.description.abstract | The aim of this work is to propose a new numerical approach to image restoration and contrast enhancement based on a reaction-diffusion model (Gray–Scott model). For noise removal, a Lattice Boltzmann technique is used. This method is usually used in fluid dynamics experiments. Since pixels motion can be compared to fluids motion, the presented technique also indicates a good performance in processing noisy images. The efficiency and performance of the proposed algorithm are verified by several numerical experiments. | |
dc.format.extent | 187-202 | |
dc.format.pages | 16 | |
dc.identifier.citation | A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement / H. Alaa, N. E. Alaa, F. Aqel, H. Lefraich // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 187–202. | |
dc.identifier.citationen | A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement / H. Alaa, N. E. Alaa, F. Aqel, H. Lefraich // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 187–202. | |
dc.identifier.doi | doi.org/10.23939/mmc2022.02.187 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63431 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (9), 2022 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (9), 2022 | |
dc.relation.references | [1] Murray J.-D. Mathematical biology. Berlin, Springer (1989). | |
dc.relation.references | [2] Teuscher C., Adamatzky A. Proc. of the 2005 Workshop on Unconventional Computing From cellular Automata to Wetwar. Luniver Press Beckington (2005). | |
dc.relation.references | [3] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990). | |
dc.relation.references | [4] Alvarez L., Lions P.-L., Morel J. M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II. SIAM Journal on Numerical Analysis. 29 (3), 845–866 (1992). | |
dc.relation.references | [5] Catt´e F., Lions P-L., Morel J.-M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992). | |
dc.relation.references | [6] Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009). | |
dc.relation.references | [7] Alaa K., Atounti M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021). | |
dc.relation.references | [8] Morfu S., Marqui´e P., Nofi´el´e B., Ginhac D. Chapter 3 – Nonlinear systems for image processing. Advances in Imaging and Electron Physics. 152, 79–151 (2008). | |
dc.relation.references | [9] Morfu S., Nofiele B., Marqui´e P. On the use of multistability for image processing. Physics Letters A. 367 (3), 192–198 (2007). | |
dc.relation.references | [10] Oussous M. A., Alaa N., Khouya Y. A. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014). | |
dc.relation.references | [11] Hardy J., Pomeau Y., de Pazzis O. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics. 14 (12), 1746–1759 (1973). | |
dc.relation.references | [12] Chen S., Doolen G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics. 30 (1), 329–364 (1998). | |
dc.relation.references | [13] Wolf–Gladrow D. A. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer–Verlag, Berlin–Heidelberg (2000). | |
dc.relation.references | [14] Shan X. Simulation of Rayleigh–B´enard convection using a lattice Boltzmann method. Physival Review E. 55 (3), 2780–2788 (1997). | |
dc.relation.references | [15] Ho J.-R., Kuo C.-P., Jiaung W.-S., Twu C.-J. Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numerical Heat Transfer, Part B: Fundamentals. 41 (6), 591–607 (2002). | |
dc.relation.references | [16] Shi B., Deng B., Du R., Chen X. A new scheme for source term in LBGK model for convection-diffusion equation. Computers & Mathematics with Applications. 55 (7), 1568–1575 (2008). | |
dc.relation.references | [17] Chai Z., Zhao T. S. Lattice Boltzmann model for the convection-diffusion equation. Physical Review E. 87 (6), 063309 (2013). | |
dc.relation.references | [18] Chaabane R., Askri F., Nasrallah S. B. Analysis of two-dimensional transient conduction?radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. Computer Physics Communications. 182 (7), 1402–1413 (2011). | |
dc.relation.references | [19] Jawerth B., Lin P., Sinzinger E. Lattice Boltzmann Models for Anisotropic Diffusion of Images. Journal of Mathematical Imaging and Vision. 11, 231–237 (1999). | |
dc.relation.references | [20] Sun X., Wang Z., Chen G. Parallel active contour with Lattice Boltzmann scheme on modern GPU. 2021 19th IEEE International Conference on Image Processing. 1709–1712 (2012). | |
dc.relation.references | [21] Balla-Arab´e S., Gao X. Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing. 93, 106–114 (2012). | |
dc.relation.references | [22] Chang Q., Yang T. A Lattice Boltzmann Method for Image Denoising. IEEE Transactions on Image Processing. 18 (12), 2797–2802 (2009). | |
dc.relation.references | [23] Chen J., Chai Z., Shi B., Zhang W. Lattice Boltzmann method for filtering and contour detection of the natural images. Computers & Mathematics with Applications. 68 (3), 257–268 (2014). | |
dc.relation.references | [24] Ambrosio L., Tortorelli V. M. Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics. 43 (8), 999–1036 (1990). | |
dc.relation.references | [25] Nomura A., Ichikawa M., Sianipar R. H., Miike H. Edge detection with reaction-diffusion equations having a local average threshold. Pattern Recognition and Image Analysis. 18 (2), 289–299 (2008). | |
dc.relation.references | [26] Witkin A., Kass M. Reaction-diffusion textures. ACM SIGGRAPH Computer Graphics. 25 (4), 299–308 (1991). | |
dc.relation.references | [27] Sanderson A. R., Johnson C. R., Kirby R. M., Yang L. Advanced reaction-diffusion models for texture synthesis. Journal of Graphics Tools. 11 (3), 47–71 (2006). | |
dc.relation.references | [28] Black M. J., Sapiro G., Marimont D. H., Heeger D. Robust anisotropic diffusion. IEEE Transactions on Image Processing. 7 (3), 421–432 (1998). | |
dc.relation.referencesen | [1] Murray J.-D. Mathematical biology. Berlin, Springer (1989). | |
dc.relation.referencesen | [2] Teuscher C., Adamatzky A. Proc. of the 2005 Workshop on Unconventional Computing From cellular Automata to Wetwar. Luniver Press Beckington (2005). | |
dc.relation.referencesen | [3] Perona P., Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 12 (7), 629–639 (1990). | |
dc.relation.referencesen | [4] Alvarez L., Lions P.-L., Morel J. M. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion. II. SIAM Journal on Numerical Analysis. 29 (3), 845–866 (1992). | |
dc.relation.referencesen | [5] Catt´e F., Lions P-L., Morel J.-M., Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis. 29 (1), 182–193 (1992). | |
dc.relation.referencesen | [6] Morfu S. On some applications of diffusion processes for image processing. Physics Letters A. 373 (29), 2438–2444 (2009). | |
dc.relation.referencesen | [7] Alaa K., Atounti M., Zirhem M. Image restoration and contrast enhancement based on a nonlinear reactiondiffusion mathematical model and divide & conquer technique. Mathematical Modeling and Computing. 8 (3), 549–559 (2021). | |
dc.relation.referencesen | [8] Morfu S., Marqui´e P., Nofi´el´e B., Ginhac D. Chapter 3 – Nonlinear systems for image processing. Advances in Imaging and Electron Physics. 152, 79–151 (2008). | |
dc.relation.referencesen | [9] Morfu S., Nofiele B., Marqui´e P. On the use of multistability for image processing. Physics Letters A. 367 (3), 192–198 (2007). | |
dc.relation.referencesen | [10] Oussous M. A., Alaa N., Khouya Y. A. Anisotropic and nonlinear diffusion applied to image enhancement and edge detection. International Journal of Computer Applications in Technology. 49 (2), 122–133 (2014). | |
dc.relation.referencesen | [11] Hardy J., Pomeau Y., de Pazzis O. Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions. Journal of Mathematical Physics. 14 (12), 1746–1759 (1973). | |
dc.relation.referencesen | [12] Chen S., Doolen G. D. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics. 30 (1), 329–364 (1998). | |
dc.relation.referencesen | [13] Wolf–Gladrow D. A. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer–Verlag, Berlin–Heidelberg (2000). | |
dc.relation.referencesen | [14] Shan X. Simulation of Rayleigh–B´enard convection using a lattice Boltzmann method. Physival Review E. 55 (3), 2780–2788 (1997). | |
dc.relation.referencesen | [15] Ho J.-R., Kuo C.-P., Jiaung W.-S., Twu C.-J. Lattice Boltzmann scheme for hyperbolic heat conduction equation. Numerical Heat Transfer, Part B: Fundamentals. 41 (6), 591–607 (2002). | |
dc.relation.referencesen | [16] Shi B., Deng B., Du R., Chen X. A new scheme for source term in LBGK model for convection-diffusion equation. Computers & Mathematics with Applications. 55 (7), 1568–1575 (2008). | |
dc.relation.referencesen | [17] Chai Z., Zhao T. S. Lattice Boltzmann model for the convection-diffusion equation. Physical Review E. 87 (6), 063309 (2013). | |
dc.relation.referencesen | [18] Chaabane R., Askri F., Nasrallah S. B. Analysis of two-dimensional transient conduction?radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method. Computer Physics Communications. 182 (7), 1402–1413 (2011). | |
dc.relation.referencesen | [19] Jawerth B., Lin P., Sinzinger E. Lattice Boltzmann Models for Anisotropic Diffusion of Images. Journal of Mathematical Imaging and Vision. 11, 231–237 (1999). | |
dc.relation.referencesen | [20] Sun X., Wang Z., Chen G. Parallel active contour with Lattice Boltzmann scheme on modern GPU. 2021 19th IEEE International Conference on Image Processing. 1709–1712 (2012). | |
dc.relation.referencesen | [21] Balla-Arab´e S., Gao X. Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing. 93, 106–114 (2012). | |
dc.relation.referencesen | [22] Chang Q., Yang T. A Lattice Boltzmann Method for Image Denoising. IEEE Transactions on Image Processing. 18 (12), 2797–2802 (2009). | |
dc.relation.referencesen | [23] Chen J., Chai Z., Shi B., Zhang W. Lattice Boltzmann method for filtering and contour detection of the natural images. Computers & Mathematics with Applications. 68 (3), 257–268 (2014). | |
dc.relation.referencesen | [24] Ambrosio L., Tortorelli V. M. Approximation of functional depending on jumps by elliptic functional via t-convergence. Communications on Pure and Applied Mathematics. 43 (8), 999–1036 (1990). | |
dc.relation.referencesen | [25] Nomura A., Ichikawa M., Sianipar R. H., Miike H. Edge detection with reaction-diffusion equations having a local average threshold. Pattern Recognition and Image Analysis. 18 (2), 289–299 (2008). | |
dc.relation.referencesen | [26] Witkin A., Kass M. Reaction-diffusion textures. ACM SIGGRAPH Computer Graphics. 25 (4), 299–308 (1991). | |
dc.relation.referencesen | [27] Sanderson A. R., Johnson C. R., Kirby R. M., Yang L. Advanced reaction-diffusion models for texture synthesis. Journal of Graphics Tools. 11 (3), 47–71 (2006). | |
dc.relation.referencesen | [28] Black M. J., Sapiro G., Marimont D. H., Heeger D. Robust anisotropic diffusion. IEEE Transactions on Image Processing. 7 (3), 421–432 (1998). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | відновлення зображення | |
dc.subject | метод граткових рівнянь Больцмана | |
dc.subject | модель Грея—Скотта | |
dc.subject | реакція–дифузія | |
dc.subject | покращення контрасту | |
dc.subject | схема D2Q9 | |
dc.subject | схема D2Q5 | |
dc.subject | image restoration | |
dc.subject | Lattice Boltzmann method | |
dc.subject | Gray–Scott model | |
dc.subject | reaction–diffusion | |
dc.subject | contrast enhancement | |
dc.subject | D2Q9 scheme | |
dc.subject | D2Q5 scheme | |
dc.title | A new Lattice Boltzmann method for a Gray–Scott based model applied to image restoration and contrast enhancement | |
dc.title.alternative | Новий метод граткових рівнянь Больцмана для базової моделі Грея–Скотта, застосований для відновлення зображень та покращення їхнього контрасту | |
dc.type | Article |
Files
License bundle
1 - 1 of 1