Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base
dc.citation.epage | 338 | |
dc.citation.issue | 2 | |
dc.citation.spage | 325 | |
dc.contributor.affiliation | Ivane Javakhishvili Tbilisi State University | |
dc.contributor.affiliation | Georgian Technical University | |
dc.contributor.affiliation | Sokhumi State University | |
dc.contributor.author | Mukbaniani, Omar | |
dc.contributor.author | Tatrishvili, Tamara | |
dc.contributor.author | Kvinikadze, Nikoloz | |
dc.contributor.author | Bukia, Tinatin | |
dc.contributor.author | Pachulia, Zurab | |
dc.contributor.author | Pirtskheliani, Nana | |
dc.contributor.author | Petriashvili, Gia | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:30Z | |
dc.date.available | 2024-02-12T08:30:30Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Здійснено алкілування стирену вінілтриметоксисиланом за реакцію Фріделя–Крафтса в присутності безводного AlCl3. Отримано алкокси(4-вінілфенетил)силан. Синтезовані продукти ідентифікували за допомогою 1H, 13C, COSY ЯМР та FTIR спектроскопії. Обговорено розрахунки з використанням методу квантово-хімічної неемпіричної теорії функціоналу густини (DFT) для реакції між вінілтриметоксисиланом і стиреном, здійсненої за орто-, мета- і пара-положеннями. Для теоретичного моделювання використовували програму онлайн-прогнозування “Priroda-04: A quantum-chemical program suite”. За різних температур і тисків методом гарячого пресування або екструзії були одержані композиційні матеріали на основі деревної тирси різної дисперсності та синтезованого триметоксисилілованого стирену як в'яжучого й армувального агента зі ступенями силілування (5 %) у присутності різноманітних органічних/неорганічних добавок, антипіренів та антиоксидантів. Досліджено фізико-механічні властивості композитів. | |
dc.description.abstract | Friedel-Crafts alkylation reaction of vinyltrimethoxysilane with styrene was performed in the presence of anhydrous AlCl3. Alkoxy(4-vinylphenethyl)silane has been obtained. The synthesized products were identified by 1H, 13C, COSY NMR, and FTIR spectroscopy. Calculations using the quantum-chemical non-empirical density functional theory (DFT) method for the reaction between vinyltrimethoxysilane and styrene performed for ortho-, meta- and para-positions were discussed. For the theoretical modeling an online prediction program “Priroda-04: A quantum-chemical program suite” was used. Composite materials based on wood sawdust with various dispersion qualities and synthesized trimethoxysilylated styrene as a binding and reinforcing agent with degrees of silylation (5 %), in the presence of various organic/inorganic additives, fire retardants, and antioxidants, have been developed at different temperatures and pressures via hot press method or extrusion. The physico-mechanical properties of composites have been investigated. | |
dc.format.extent | 325-338 | |
dc.format.pages | 14 | |
dc.identifier.citation | Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base / Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvinikadze, Tinatin Bukia, Zurab Pachulia, Nana Pirtskheliani, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 325–338. | |
dc.identifier.citationen | Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base / Omar Mukbaniani, Tamara Tatrishvili, Nikoloz Kvinikadze, Tinatin Bukia, Zurab Pachulia, Nana Pirtskheliani, Gia Petriashvili // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 325–338. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.325 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61236 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] The Chemistry and Physics of Coatings; Marrion, A., Ed.; The Royal Society of Chemistry: Cambridge, 2004. | |
dc.relation.references | [2] Organic Coatings: Science and Technology; Wicks, Z.W., Jones, F.N.; Pappas, S.P.; Wicks, D.A., Eds.; John Wiley & Sons: New Jersey, 2007. | |
dc.relation.references | [3] High-performance organic coatings; Khanna, A.S., Ed.; CRC Press: Florida, 2008. | |
dc.relation.references | [4] Talbert, R. Paint Technology Handbook; CRC Press: Florida, 2008. | |
dc.relation.references | [5] Hybrid Materials: Synthesis, Characterization and Applications; Kickelbick, G., Ed.; WILEY-VCH: Weinheim, 2007. | |
dc.relation.references | [6] Tsujimoto, T.; Uyama, H.; Kobayashi, S. Synthesis of High-Performance Green Nanocomposites from Renewable Natural Oils. Polym. Degrad. Stab. 2010, 95, 1399-1405. https://doi.org/10.1016/j.polymdegradstab.2010.01.016 | |
dc.relation.references | [7] Tsujimoto, T.; Uyama, H.; Kobayashi, S. Green Nanocompo-sites from Renewable Resources: Biodegradable Plant Oil-Silica Hybrid Coatings. Macromol. Rapid Commun. 2003, 24, 711-714. https://doi.org/10.1002/marc.200350015 | |
dc.relation.references | [8] Xia, Y.; Larock, R.C. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. Green Chem. 2010, 12, 1893-1909. https://doi.org/10.1039/C0GC00264J | |
dc.relation.references | [9] Galià, M.; de Espinosa, L.M.; Ronda, J.C.; Lligadas, G.; Cádiz, V. Vegetable Oil-Based Thermosetting Polymers. Eur. J. Lipid Sci. Technol. 2010, 112, 87-96. https://doi.org/10.1002/ejlt.200900096 | |
dc.relation.references | [10] Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Re-sources. Synthesis and Properties. Biomacromolecules 2006, 7, 2420-2426. https://doi.org/10.1021/bm060402k | |
dc.relation.references | [11] Bailey's Industrial Oil and Fat Products. Volume 6. Industrial and Nonedible Products from Oils and Fats; Shahidi, F., Ed.; John Wiley&Sons: New Jersey, 2005. | |
dc.relation.references | [12] Tasdelen-Yucedag, C.; Erciyes, A.T. Modification of Polyca-prolactone-Styrene-Vinyl Trimethoxysilane Terpolymer with Sun-flower Oil for Coating Purposes. Prog. Org. Coat. 2014, 77, 1750-1760. https://doi.org/10.1016/j.porgcoat.2014.05.024 | |
dc.relation.references | [13] Jingzhou Jianghan Fine Chemical Co Ltd. Synthesis Method of Vinyltrimethoxysilane Oligomer. CN103396434A, November 20, 2013. | |
dc.relation.references | [14] Singha, A.S.; Rana, R.K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties. Mater. Des. 2012, 41, 289-297. http://dx.doi.org/10.1016%2Fj.matdes.2012.05.001 | |
dc.relation.references | [15] Sreenivasan, V.S.; Ravindran, D.; Manikandan, V.; Narayana-samy, R. Influence of Fibre Treatments on Mechanical Properties of Short Sansevieria cylindrica/Polyester Composites. Mater. Des. 2012, 37, 111-121. https://doi.org/10.1016/J.MATDES.2012.01.004 | |
dc.relation.references | [16] Arrakhiz, F.Z.; El Achaby, M.; Kakou, A.C.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A. Mechanical Properties of High Density Polyethene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments. Mater. Des. 2012, 37, 379-383. https://doi.org/10.1016/j.matdes.2012.01.020 | |
dc.relation.references | [17] Massoodi, R.; El Hajjar, R.F.; Pillai, K.M.; Sabo, R. Mechani-cal Characterization of Cellulose Nanofiber and Biobased Epoxy Composites. Mater. Des. 2012, 36, 570-576. http://dx.doi.org/10.1016%2Fj.matdes.2011.11.042 | |
dc.relation.references | [18] Yang, H.S.; Kim, H.J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Effect of Compatibility Agents on Rice Husk Flour Reinforced Polypropylene Composites. Compos. Struct. 2007, 77, 45-55. https://doi.org/10.1016/j.compstruct.2005.06.005 | |
dc.relation.references | [19] Kim, H.-S.; Yang, H.-S.; Kim, H.-J. Biodegradability and Mechanical Properties of Agro Flour Filled Polybutylene Succinate Biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513-1521. https://doi.org/10.1002/app.21905 | |
dc.relation.references | [20] Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24, 694-698. http://dx.doi.org/10.1016/j.polymertesting.2005.05.004 | |
dc.relation.references | [21] Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. http://dx.doi.org/10.1016/j.matdes.2011.09.023 | |
dc.relation.references | [22] Amin, S.; Amin, M. Thermoplastic Elastomeric (TPE) Mate-rials and their Use in Outdoor Electrical Insulation. Rev. Adv. Mater. Sci. 2011, 29, 15-30. | |
dc.relation.references | [23] Biron, M. Thermoplastics and Thermoplastic Composites. Technical Information for Plastics Users; Oxford: Butterworth-Heinemann, 2007. | |
dc.relation.references | [24] Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7 | |
dc.relation.references | [25] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour–Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864 | |
dc.relation.references | [26] Katz, H.S.; Milevski, J.V. Handbook of Fillers for Plastics; RAPRA: New York, 1987. | |
dc.relation.references | [27] Mareri, P.; Bastide, S.; Binda, N.; Crespi, A. Mechanical Behaviour of Polypropylene Composites Containing Fine Mineral Filler: Effect of Filler Surface Treatment. Compos. Sci. Technol. 1998, 58, 747-752. https://doi.org/10.1016/S0266-3538(97)00156-5 | |
dc.relation.references | [28] Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333. https://doi.org/10.1590/S1516-14392009000300014 | |
dc.relation.references | [29] Tatrishvili, T.; Koberidze, Kh.; Mukbaniani, O. Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Proceedings of the Georgian National Academy of Sciences 2007, 35, 297-300. | |
dc.relation.references | [30] Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calcula-tions for Hydrosilylation Reaction of Methyldimethoxysilane with Hexane-1. Proceedings of the Georgian Academy of Science 2006, 32, 109-114. | |
dc.relation.references | [31] Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O. AM1 Calcula-tions for Hydride Addition Reaction of Methyldimethoxysilane with Styrene. Georgian Chemical Journal 2006, 6, 58-59. | |
dc.relation.references | [32] Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S. Hydrosilylation Reactions of α,ω-Bis(trimethylsiloxy) methylhydri-desiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal 2006, 6, 254-255. | |
dc.relation.references | [33] Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reac-tion Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7, 669-676. https://doi.org/10.1021/ct1006604 | |
dc.relation.references | [34] Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083-1093. https://doi.org/10.1007/s11224-015-0573-0 | |
dc.relation.references | [35] Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546 | |
dc.relation.references | [36] Kirste, B. Applications of Density Functional Theory to Theo-retical Organic Chemistry. Chem. Sci. 2016, 7, 1000127. https://refubium.fu-berlin.de/handle/fub188/15854 | |
dc.relation.references | [37] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.references | [38] Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani. N. Synthesis of Trie-thoxy(Vinylphenethyl)Silane with Alkylation Reaction of Vinyltrie-thoxysilane to Styrene. Oxid. Commun. 2022, 45, 309-320. | |
dc.relation.references | [39] Demchuk, Yu.; Gunka, V.; Pyshyiv, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.references | [40] Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8, 309-316. https://doi.org/10.23939/chcht08.03.309 | |
dc.relation.references | [41] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phe-nomenon during Drop Impact Testing and Its Simple Dynamics Model. World Journal of Mechanics 2015, 5, 33-41. http://dx.doi.org/10.4236/wjm.2015.53004 | |
dc.relation.references | [42] Titvinidze, G.; Tatrishvili, T.; Mukbaniani, O. Chemical Mod-ification of Styrene with Vinyl Containing Organosiloxane via Diels-Alder Reactions. Abstracts of Communications of Interna-tional Conference Enikolopov’s Readings, Erevan, Armenia, 4-7 October, 2006; p. 74. | |
dc.relation.references | [43] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, USA, 2016. | |
dc.relation.references | [44] Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. US 0225233A1, 2012. | |
dc.relation.references | [45] Smith, B.C. Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy 2016, 31, 36-39. | |
dc.relation.references | [46] https://www.nmrdb.org/13c/index.shtml?v=v2.121.0 | |
dc.relation.references | [47] https://docs.chemaxon.com/display/docs/nmr-predictor.md | |
dc.relation.references | [48] ChemBioDraw Ultra 12. https://www.perkinelmer.com/Product/chemoffice-plus-cloud-[31]. [30]. chemofficepc?fbclid=IwAR2M_sx_7vTofwMAugXMb0M4xbyylkyHa4xt0jcRdrETOC8qDtpmSHjdudA | |
dc.relation.references | [49] MestreNova. https://mestrelab.com/software/mnova/nmr/ | |
dc.relation.references | [50] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499 | |
dc.relation.references | [51] Febrianto, F.; Yoshioka, M.; Nagai, Y.; Mihara, M.; Shiraishi, N. Composites of Wood and Trans-1,4-isoprene Rubber II: Processing Conditions for Production of the Composites. Wood Sci. Technol. 2001, 35, 297-310. https://doi.org/10.1007/s002260100102 | |
dc.relation.references | [52] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377 | |
dc.relation.references | [53] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Trie-thoxy(Vinylphenethyl)Silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035 | |
dc.relation.references | [54] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Educ. 2012, 34, 69-94. | |
dc.relation.referencesen | [1] The Chemistry and Physics of Coatings; Marrion, A., Ed.; The Royal Society of Chemistry: Cambridge, 2004. | |
dc.relation.referencesen | [2] Organic Coatings: Science and Technology; Wicks, Z.W., Jones, F.N.; Pappas, S.P.; Wicks, D.A., Eds.; John Wiley & Sons: New Jersey, 2007. | |
dc.relation.referencesen | [3] High-performance organic coatings; Khanna, A.S., Ed.; CRC Press: Florida, 2008. | |
dc.relation.referencesen | [4] Talbert, R. Paint Technology Handbook; CRC Press: Florida, 2008. | |
dc.relation.referencesen | [5] Hybrid Materials: Synthesis, Characterization and Applications; Kickelbick, G., Ed.; WILEY-VCH: Weinheim, 2007. | |
dc.relation.referencesen | [6] Tsujimoto, T.; Uyama, H.; Kobayashi, S. Synthesis of High-Performance Green Nanocomposites from Renewable Natural Oils. Polym. Degrad. Stab. 2010, 95, 1399-1405. https://doi.org/10.1016/j.polymdegradstab.2010.01.016 | |
dc.relation.referencesen | [7] Tsujimoto, T.; Uyama, H.; Kobayashi, S. Green Nanocompo-sites from Renewable Resources: Biodegradable Plant Oil-Silica Hybrid Coatings. Macromol. Rapid Commun. 2003, 24, 711-714. https://doi.org/10.1002/marc.200350015 | |
dc.relation.referencesen | [8] Xia, Y.; Larock, R.C. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. Green Chem. 2010, 12, 1893-1909. https://doi.org/10.1039/P.0GC00264J | |
dc.relation.referencesen | [9] Galià, M.; de Espinosa, L.M.; Ronda, J.C.; Lligadas, G.; Cádiz, V. Vegetable Oil-Based Thermosetting Polymers. Eur. J. Lipid Sci. Technol. 2010, 112, 87-96. https://doi.org/10.1002/ejlt.200900096 | |
dc.relation.referencesen | [10] Lligadas, G.; Ronda, J.C.; Galià, M.; Cádiz, V. Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Re-sources. Synthesis and Properties. Biomacromolecules 2006, 7, 2420-2426. https://doi.org/10.1021/bm060402k | |
dc.relation.referencesen | [11] Bailey's Industrial Oil and Fat Products. Volume 6. Industrial and Nonedible Products from Oils and Fats; Shahidi, F., Ed.; John Wiley&Sons: New Jersey, 2005. | |
dc.relation.referencesen | [12] Tasdelen-Yucedag, C.; Erciyes, A.T. Modification of Polyca-prolactone-Styrene-Vinyl Trimethoxysilane Terpolymer with Sun-flower Oil for Coating Purposes. Prog. Org. Coat. 2014, 77, 1750-1760. https://doi.org/10.1016/j.porgcoat.2014.05.024 | |
dc.relation.referencesen | [13] Jingzhou Jianghan Fine Chemical Co Ltd. Synthesis Method of Vinyltrimethoxysilane Oligomer. CN103396434A, November 20, 2013. | |
dc.relation.referencesen | [14] Singha, A.S.; Rana, R.K. Natural Fiber Reinforced Polystyrene Composites: Effect of Fiber Loading, Fiber Dimensions and Surface Modification on Mechanical Properties. Mater. Des. 2012, 41, 289-297. http://dx.doi.org/10.1016%2Fj.matdes.2012.05.001 | |
dc.relation.referencesen | [15] Sreenivasan, V.S.; Ravindran, D.; Manikandan, V.; Narayana-samy, R. Influence of Fibre Treatments on Mechanical Properties of Short Sansevieria cylindrica/Polyester Composites. Mater. Des. 2012, 37, 111-121. https://doi.org/10.1016/J.MATDES.2012.01.004 | |
dc.relation.referencesen | [16] Arrakhiz, F.Z.; El Achaby, M.; Kakou, A.C.; Vaudreuil, S.; Benmoussa, K.; Bouhfid, R.; Fassi-Fehri, O.; Qaiss, A. Mechanical Properties of High Density Polyethene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments. Mater. Des. 2012, 37, 379-383. https://doi.org/10.1016/j.matdes.2012.01.020 | |
dc.relation.referencesen | [17] Massoodi, R.; El Hajjar, R.F.; Pillai, K.M.; Sabo, R. Mechani-cal Characterization of Cellulose Nanofiber and Biobased Epoxy Composites. Mater. Des. 2012, 36, 570-576. http://dx.doi.org/10.1016%2Fj.matdes.2011.11.042 | |
dc.relation.referencesen | [18] Yang, H.S.; Kim, H.J.; Park, H.J.; Lee, B.J.; Hwang, T.S. Effect of Compatibility Agents on Rice Husk Flour Reinforced Polypropylene Composites. Compos. Struct. 2007, 77, 45-55. https://doi.org/10.1016/j.compstruct.2005.06.005 | |
dc.relation.referencesen | [19] Kim, H.-S.; Yang, H.-S.; Kim, H.-J. Biodegradability and Mechanical Properties of Agro Flour Filled Polybutylene Succinate Biocomposites. J. Appl. Polym. Sci. 2005, 97, 1513-1521. https://doi.org/10.1002/app.21905 | |
dc.relation.referencesen | [20] Torres, F.G.; Cubillas, M.L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005, 24, 694-698. http://dx.doi.org/10.1016/j.polymertesting.2005.05.004 | |
dc.relation.referencesen | [21] Arrakhiz, F.Z.; Elachaby, M.; Bouhfid, R.; Vaudreuil, S.; Essassi, M.; Qaiss, A. Mechanical and Thermal Properties of Polypropylene Reinforced with Alfa Fiber under Different Chemical Treatment. Mater. Des. 2012, 35, 318-322. http://dx.doi.org/10.1016/j.matdes.2011.09.023 | |
dc.relation.referencesen | [22] Amin, S.; Amin, M. Thermoplastic Elastomeric (TPE) Mate-rials and their Use in Outdoor Electrical Insulation. Rev. Adv. Mater. Sci. 2011, 29, 15-30. | |
dc.relation.referencesen | [23] Biron, M. Thermoplastics and Thermoplastic Composites. Technical Information for Plastics Users; Oxford: Butterworth-Heinemann, 2007. | |
dc.relation.referencesen | [24] Ichazo, M.N.; Albano, C.; Gonzalez, J.; Perera, R.; Candal, M.V. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207-214. https://doi.org/10.1016/S0263-8223(01)00089-7 | |
dc.relation.referencesen | [25] Lee, S.-H.; Ohkita, T. Mechanical and Thermal Flow Properties of Wood Flour–Biodegradable Polymer Composites. J. Appl. Polym. Sci. 2003, 90, 1900-1905. https://doi.org/10.1002/app.12864 | |
dc.relation.referencesen | [26] Katz, H.S.; Milevski, J.V. Handbook of Fillers for Plastics; RAPRA: New York, 1987. | |
dc.relation.referencesen | [27] Mareri, P.; Bastide, S.; Binda, N.; Crespi, A. Mechanical Behaviour of Polypropylene Composites Containing Fine Mineral Filler: Effect of Filler Surface Treatment. Compos. Sci. Technol. 1998, 58, 747-752. https://doi.org/10.1016/S0266-3538(97)00156-5 | |
dc.relation.referencesen | [28] Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333. https://doi.org/10.1590/S1516-14392009000300014 | |
dc.relation.referencesen | [29] Tatrishvili, T.; Koberidze, Kh.; Mukbaniani, O. Quantum-Chemical AM 1 Calculations for Hydride Addition Reaction of Methyldimethoxysilane to 1,3-Cyclohexadiene. Proceedings of the Georgian National Academy of Sciences 2007, 35, 297-300. | |
dc.relation.referencesen | [30] Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G. AM1 Calcula-tions for Hydrosilylation Reaction of Methyldimethoxysilane with Hexane-1. Proceedings of the Georgian Academy of Science 2006, 32, 109-114. | |
dc.relation.referencesen | [31] Tatrishvili, T.; Titvinidze, G.; Mukbaniani, O. AM1 Calcula-tions for Hydride Addition Reaction of Methyldimethoxysilane with Styrene. Georgian Chemical Journal 2006, 6, 58-59. | |
dc.relation.referencesen | [32] Mukbaniani, O.; Pirtskheliani, N.; Tatrishvili, T.; Patstasia, S. Hydrosilylation Reactions of α,o-Bis(trimethylsiloxy) methylhydri-desiloxane to Allyloxytriethoxysilane. Georgia Chemical Journal 2006, 6, 254-255. | |
dc.relation.referencesen | [33] Zhao, Y.; Truhlar, D.G. Density Functional Theory for Reac-tion Energies: Test of Meta and Hybrid Meta Functionals, Range-Separated Functionals, and Other High-Performance Functionals. J. Chem. Theory Comput. 2011, 7, 669-676. https://doi.org/10.1021/ct1006604 | |
dc.relation.referencesen | [34] Wałęsa, R.; Kupka, T.; Broda, M.A. Density Functional Theory (DFT) Prediction of Structural and Spectroscopic Parameters of Cytosine Using Harmonic and Anharmonic Approximations. Struct. Chem. 2015, 26, 1083-1093. https://doi.org/10.1007/s11224-015-0573-0 | |
dc.relation.referencesen | [35] Burke, K. Perspective on Density Functional Theory. J. Chem. Phys. 2012, 136, 150901. https://doi.org/10.1063/1.4704546 | |
dc.relation.referencesen | [36] Kirste, B. Applications of Density Functional Theory to Theo-retical Organic Chemistry. Chem. Sci. 2016, 7, 1000127. https://refubium.fu-berlin.de/handle/fub188/15854 | |
dc.relation.referencesen | [37] Aneli, J.; Shamanauri, L.; Markarashvili, E.; Tatrishvili, T.; Mukbaniani, O. Polymer-Silicate Composites with Modified Minerals. Chem. Chem. Technol. 2017, 11, 201-209. https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.referencesen | [38] Mukbaniani, O.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Pachulia, Z.; Pirtskheliani. N. Synthesis of Trie-thoxy(Vinylphenethyl)Silane with Alkylation Reaction of Vinyltrie-thoxysilane to Styrene. Oxid. Commun. 2022, 45, 309-320. | |
dc.relation.referencesen | [39] Demchuk, Yu.; Gunka, V.; Pyshyiv, S.; Sidun, Yu.; Hrynchuk, Yu.; Kucinska-Lipka, Ju.; Bratychak, M. Slurry Surfacing Mixed on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.referencesen | [40] Bashta, B.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Epoxy Resins Chemical Modification by Dibasic Acids. Chem. Chem. Technol. 2014, 8, 309-316. https://doi.org/10.23939/chcht08.03.309 | |
dc.relation.referencesen | [41] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phe-nomenon during Drop Impact Testing and Its Simple Dynamics Model. World Journal of Mechanics 2015, 5, 33-41. http://dx.doi.org/10.4236/wjm.2015.53004 | |
dc.relation.referencesen | [42] Titvinidze, G.; Tatrishvili, T.; Mukbaniani, O. Chemical Mod-ification of Styrene with Vinyl Containing Organosiloxane via Diels-Alder Reactions. Abstracts of Communications of Interna-tional Conference Enikolopov’s Readings, Erevan, Armenia, 4-7 October, 2006; p. 74. | |
dc.relation.referencesen | [43] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. Ph.D. Thesis, Graduate Faculty of the University of Akron, USA, 2016. | |
dc.relation.referencesen | [44] Guy, L.; Pevere, V.; Vidal, T. Use of a Specific Functionalised Organosilicon Compound as a Coupling Agent in an Isoprene Elastomer Composition Including a Reinforcing Inorganic Filler. US 0225233A1, 2012. | |
dc.relation.referencesen | [45] Smith, B.C. Distinguishing Structural Isomers: Mono- and Disubstituted Benzene Rings. Spectroscopy 2016, 31, 36-39. | |
dc.relation.referencesen | [46] https://www.nmrdb.org/13c/index.shtml?v=v2.121.0 | |
dc.relation.referencesen | [47] https://docs.chemaxon.com/display/docs/nmr-predictor.md | |
dc.relation.referencesen | [48] ChemBioDraw Ultra 12. https://www.perkinelmer.com/Product/chemoffice-plus-cloud-[31]. [30]. chemofficepc?fbclid=IwAR2M_sx_7vTofwMAugXMb0M4xbyylkyHa4xt0jcRdrETOC8qDtpmSHjdudA | |
dc.relation.referencesen | [49] MestreNova. https://mestrelab.com/software/mnova/nmr/ | |
dc.relation.referencesen | [50] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Markarashvili, E.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499 | |
dc.relation.referencesen | [51] Febrianto, F.; Yoshioka, M.; Nagai, Y.; Mihara, M.; Shiraishi, N. Composites of Wood and Trans-1,4-isoprene Rubber II: Processing Conditions for Production of the Composites. Wood Sci. Technol. 2001, 35, 297-310. https://doi.org/10.1007/s002260100102 | |
dc.relation.referencesen | [52] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377 | |
dc.relation.referencesen | [53] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Trie-thoxy(Vinylphenethyl)Silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035 | |
dc.relation.referencesen | [54] Kalogeras, I.M.; Hagg Lobland, H.E. The Nature of the Glassy State: Structure and Transitions. J. Mater. Educ. 2012, 34, 69-94. | |
dc.relation.uri | https://doi.org/10.1016/j.polymdegradstab.2010.01.016 | |
dc.relation.uri | https://doi.org/10.1002/marc.200350015 | |
dc.relation.uri | https://doi.org/10.1039/C0GC00264J | |
dc.relation.uri | https://doi.org/10.1002/ejlt.200900096 | |
dc.relation.uri | https://doi.org/10.1021/bm060402k | |
dc.relation.uri | https://doi.org/10.1016/j.porgcoat.2014.05.024 | |
dc.relation.uri | http://dx.doi.org/10.1016%2Fj.matdes.2012.05.001 | |
dc.relation.uri | https://doi.org/10.1016/J.MATDES.2012.01.004 | |
dc.relation.uri | https://doi.org/10.1016/j.matdes.2012.01.020 | |
dc.relation.uri | http://dx.doi.org/10.1016%2Fj.matdes.2011.11.042 | |
dc.relation.uri | https://doi.org/10.1016/j.compstruct.2005.06.005 | |
dc.relation.uri | https://doi.org/10.1002/app.21905 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.polymertesting.2005.05.004 | |
dc.relation.uri | http://dx.doi.org/10.1016/j.matdes.2011.09.023 | |
dc.relation.uri | https://doi.org/10.1016/S0263-8223(01)00089-7 | |
dc.relation.uri | https://doi.org/10.1002/app.12864 | |
dc.relation.uri | https://doi.org/10.1016/S0266-3538(97)00156-5 | |
dc.relation.uri | https://doi.org/10.1590/S1516-14392009000300014 | |
dc.relation.uri | https://doi.org/10.1021/ct1006604 | |
dc.relation.uri | https://doi.org/10.1007/s11224-015-0573-0 | |
dc.relation.uri | https://doi.org/10.1063/1.4704546 | |
dc.relation.uri | https://refubium.fu-berlin.de/handle/fub188/15854 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.02.201 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.251 | |
dc.relation.uri | https://doi.org/10.23939/chcht08.03.309 | |
dc.relation.uri | http://dx.doi.org/10.4236/wjm.2015.53004 | |
dc.relation.uri | https://www.nmrdb.org/13c/index.shtml?v=v2.121.0 | |
dc.relation.uri | https://docs.chemaxon.com/display/docs/nmr-predictor.md | |
dc.relation.uri | https://www.perkinelmer.com/Product/chemoffice-plus-cloud- | |
dc.relation.uri | https://mestrelab.com/software/mnova/nmr/ | |
dc.relation.uri | https://doi.org/10.23939/chcht16.04.499 | |
dc.relation.uri | https://doi.org/10.1007/s002260100102 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.377 | |
dc.relation.uri | https://doi.org/10.23939/chcht17.01.035 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Mukbaniani O., Tatrishvili T., Kvinikadze N., Bukia T., Pachulia Z., Pirtskheliani N., Petriashvili G., 2023 | |
dc.subject | триметокси(4-вінілфенетил)силан | |
dc.subject | реакція алкілування | |
dc.subject | FTIR і ЯМР спектроскопія | |
dc.subject | DFT | |
dc.subject | trimethoxy(4-vinylphenethyl)silane | |
dc.subject | alkylation reaction | |
dc.subject | FTIR and NMR spectroscopy | |
dc.subject | DFT | |
dc.title | Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base | |
dc.title.alternative | Реакція Фріделя-Крафтса вінілтриметоксисилану зі стиреном та композитні матеріали на їхній основі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1