Triple diffusive magneto convection in a fluid-porous composite system

dc.citation.epage238
dc.citation.issue1
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage226
dc.contributor.affiliationУніверситет Нрупатунга
dc.contributor.affiliationУніверситет PES
dc.contributor.affiliationУніверситет REVA
dc.contributor.affiliationNrupathunga University
dc.contributor.affiliationPES University
dc.contributor.affiliationREVA University
dc.contributor.authorСумітра, Р.
dc.contributor.authorКомала, Б.
dc.contributor.authorМанджунатха, Н.
dc.contributor.authorSumithra, R.
dc.contributor.authorKomala, B.
dc.contributor.authorManjunatha, N.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:54:51Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено потрійну дифузійну магнетоконвекцію для рідинно-пористої композитної системи з жорсткими межами, які ізольовані від температури та концентрації. Пористий шар композитної системи моделюється за допомогою моделі Дарсі–Брінкмана. Для визначення власного значення розглядуваної задачі використовується метод регулярних збурень. Критичне число Релея, яке є критерієм для початку конвекції, отримано для ступінчастої функції, засолювання нижче та знесолення вище профілів солоності. Графічно зображено вплив різних фізичних параметрів на початок конвекції та проаналізовано стійкість системи.
dc.description.abstractA study on triple diffusive magneto convection is made for a fluid – porous composite system with rigid-rigid boundaries insulated to temperature and concentration. The porous layer of the composite system is modeled using Darcy–Brinkman model. The method of regular perturbation approach is employed to find the eigen-value for the problem considered. The critical Rayleigh number as criterion for the onset of convection is derived for step function, salting below and desalting above salinity profiles. The effect of various physical parameter on the onset of convection is graphically depicted and the stability of the system is analyzed.
dc.format.extent226-238
dc.format.pages13
dc.identifier.citationSumithra R. Triple diffusive magneto convection in a fluid-porous composite system / R. Sumithra, B. Komala, N. Manjunatha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 226–238.
dc.identifier.citationenSumithra R. Triple diffusive magneto convection in a fluid-porous composite system / R. Sumithra, B. Komala, N. Manjunatha // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 1. — P. 226–238.
dc.identifier.doi10.23939/mmc2023.01.226
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63493
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 1 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 1 (10), 2023
dc.relation.references[1] Turner J. S. Buoyancy Effects in Fluids. University of Cambridge (1979).
dc.relation.references[2] Rudraiah N., Shivakumara I. S. Double-diffusive convection with an imposed magnetic field. International Journal of Heat and Mass Transfer. 27 (10), 1825–1836 (1984).
dc.relation.references[3] Thompson W. B. Thermal convection in a magnetic field. Philosophical Magazine. 42 (335), 1417–1432 (1951).
dc.relation.references[4] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London, UK (1961).
dc.relation.references[5] Lortz D. A stability criterion for steady finite amplitude convection with an external magnetic field. Journal of Fluid Mechanics. 23 (1), 113–128 (1965).
dc.relation.references[6] Rudraiah N. Double-diffusive magnetoconvection. Pramana. 27, 233–266 (1986).
dc.relation.references[7] Siddheshwar P. G., Pranesh S. Magnetoconvection in fluids with suspended particles under 1g and µg. Aerospace Science and Technology. 6 (2), 105–114 (2002).
dc.relation.references[8] Prakash J., Kumari K., Kumar R. Triple diffusive convection in a Maxwell fluid saturated porous layer: Darcy–Brinkman–Maxwell Model. Journal of Porous Media. 19 (10), 87–883 (2016).
dc.relation.references[9] Shivakumara I. S., Naveen Kumar S. B. Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. International Journal of Heat and Mass Transfer. 68, 542–553 (2014).
dc.relation.references[10] Manjunatha N., Sumithra R. Effects of non-uniform temperature gradients on triple diffusive surface tension driven magneto convection in a composite layer. Universal Journal of Mechanical Engineering. 7 (6), 398–410 (2019).
dc.relation.references[11] Awasthi M. K., Kumar V., Patel R. K. Onset of triply diffusive convection in a Maxwell fluid saturated porous layer with internal heat source. Ain Shams Engineering Journal. 9 (4), 1591–1600 (2018).
dc.relation.references[12] Komala B., Sumithra R. Effects of non-uniform salinity gradients on the onset of double diffusive magnetoMarangoni convection in a composite layer. International Journal of Advanced Science and Technology. 28 (15), 874–885 (2019).
dc.relation.references[13] Currie I. G. The effect of heating rate on the stability of stationary fluids. Journal of Fluid Mechanics. 29 (2), 337–347 (1967).
dc.relation.references[14] Vidal A., Acrivos A. Nature of the neutral state in surface-tension driven convection. The Physics of Fluids. 9 (3), 615 (1966).
dc.relation.referencesen[1] Turner J. S. Buoyancy Effects in Fluids. University of Cambridge (1979).
dc.relation.referencesen[2] Rudraiah N., Shivakumara I. S. Double-diffusive convection with an imposed magnetic field. International Journal of Heat and Mass Transfer. 27 (10), 1825–1836 (1984).
dc.relation.referencesen[3] Thompson W. B. Thermal convection in a magnetic field. Philosophical Magazine. 42 (335), 1417–1432 (1951).
dc.relation.referencesen[4] Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, London, UK (1961).
dc.relation.referencesen[5] Lortz D. A stability criterion for steady finite amplitude convection with an external magnetic field. Journal of Fluid Mechanics. 23 (1), 113–128 (1965).
dc.relation.referencesen[6] Rudraiah N. Double-diffusive magnetoconvection. Pramana. 27, 233–266 (1986).
dc.relation.referencesen[7] Siddheshwar P. G., Pranesh S. Magnetoconvection in fluids with suspended particles under 1g and µg. Aerospace Science and Technology. 6 (2), 105–114 (2002).
dc.relation.referencesen[8] Prakash J., Kumari K., Kumar R. Triple diffusive convection in a Maxwell fluid saturated porous layer: Darcy–Brinkman–Maxwell Model. Journal of Porous Media. 19 (10), 87–883 (2016).
dc.relation.referencesen[9] Shivakumara I. S., Naveen Kumar S. B. Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. International Journal of Heat and Mass Transfer. 68, 542–553 (2014).
dc.relation.referencesen[10] Manjunatha N., Sumithra R. Effects of non-uniform temperature gradients on triple diffusive surface tension driven magneto convection in a composite layer. Universal Journal of Mechanical Engineering. 7 (6), 398–410 (2019).
dc.relation.referencesen[11] Awasthi M. K., Kumar V., Patel R. K. Onset of triply diffusive convection in a Maxwell fluid saturated porous layer with internal heat source. Ain Shams Engineering Journal. 9 (4), 1591–1600 (2018).
dc.relation.referencesen[12] Komala B., Sumithra R. Effects of non-uniform salinity gradients on the onset of double diffusive magnetoMarangoni convection in a composite layer. International Journal of Advanced Science and Technology. 28 (15), 874–885 (2019).
dc.relation.referencesen[13] Currie I. G. The effect of heating rate on the stability of stationary fluids. Journal of Fluid Mechanics. 29 (2), 337–347 (1967).
dc.relation.referencesen[14] Vidal A., Acrivos A. Nature of the neutral state in surface-tension driven convection. The Physics of Fluids. 9 (3), 615 (1966).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectпотрійна дифузійна магнетоконвекція
dc.subjectнеоднорідні градієнти солоності
dc.subjectметод регулярных возмущений
dc.subjecttriple diffusive magneto convection
dc.subjectnon uniform salinity gradients
dc.subjectregular perturbation technique
dc.titleTriple diffusive magneto convection in a fluid-porous composite system
dc.title.alternativeПотрійна дифузійна магнетоконвекція у рідинно-пористій композитній системі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n1_Sumithra_R-Triple_diffusive_magneto_226-238.pdf
Size:
1.68 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n1_Sumithra_R-Triple_diffusive_magneto_226-238__COVER.png
Size:
435.42 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: