Synthesis and properties of silica nanoparticles with functional polymer shell

dc.citation.epage158
dc.citation.issue1
dc.citation.spage153
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШевчук, О. М.
dc.contributor.authorБукартик, Н. М.
dc.contributor.authorНадашкевич, З. Я.
dc.contributor.authorТокарев, В. С.
dc.contributor.authorShevchuk, O. M.
dc.contributor.authorBukartyk, N. M.
dc.contributor.authorNadashkevych, Z. Ya.
dc.contributor.authorTokarev, V. S.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-02-28T13:09:32Z
dc.date.available2020-02-28T13:09:32Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractНаночастинки діоксиду силіцію з функціональною полімерною оболонкою на основі реакційноздатних пероксидовмісних кополімерів синтезовано з використанням золь-гель методу. Отримано унімодальні наночастинки сферичної форми розміром 190–350 нм з низьким коефіцієнтом полідисперсності. Досліджено вплив природи та концентрації кополімеру, концентрації каталізатора, температури на кінетику росту та розмір наночастинок. Формування функціональної пероксидної полімерної оболонки на поверхні наночастинок діоксиду силіцію підтверджено методами газорідинної хроматографії та комплексного термічного аналізу.
dc.description.abstractSilica nanoparticles with functional polymer shell based on reactive peroxide-containing copolymers were synthesized via sol-gel method. Unimodal nanoparticles of spherical shell with the size of 190–350 nm and low polydispersity index were obtained. The influence of copolymer nature and concentration, catalyst concentration, onto process kinetics and nanoparticle size was studied. The formation of functional polymeric shell on the surface of silica nanoparticles was proved using the methods of gas-liquid chromatography and complex thermal analysis.
dc.format.extent153-158
dc.format.pages6
dc.identifier.citationSynthesis and properties of silica nanoparticles with functional polymer shell / O. M. Shevchuk, N. M. Bukartyk, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 153–158.
dc.identifier.citationenSynthesis and properties of silica nanoparticles with functional polymer shell / O. M. Shevchuk, N. M. Bukartyk, Z. Ya. Nadashkevych, V. S. Tokarev // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 153–158.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46373
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (2), 2019
dc.relation.references1. Crosby, A., Lee, J.-Y. (2007). Polymer nanocomposites: the “nano” effect on mechanical properties. Polymer Review, 47(2), 217–229.
dc.relation.references2. Ramanathan, T., Abdala, A. A., Stankovich, S. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. doi: 10.1038/nnano.2008.96
dc.relation.references3. Dubey, R., Rajesh, Y., More, M. (2015). Synthesis and Characterization of SiO2 nanoparticles via sol-gel method for industrial application. Materials Today: Proceedings, 2, 3575–3579.
dc.relation.references4. Liu, Y.-L., Wu, C.-S., Chiu, Y.-S., Ho, W.-H. (2003). Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. Journal of Polymer Science A., 41, 2354–2367. doi. org/10.1002/pola.10778.
dc.relation.references5. Zhang, S., Xu, T., Wu, C. (2006). Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2,6-dimethyl-1,4-phenylene oxide). Journal of Membrane Science, 269, 142–151.
dc.relation.references6. Osseo-Asare, K., Arriagada, F. J. (1990). Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces, 50, 321–339. doi:10.1016/0166-6622(90)80273-7.
dc.relation.references7. Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Colloid and Interface Science, 26, P. 62.
dc.relation.references8. Wu, T. M., Chu, M. S. (2005). Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science, 98, 2058–2063.
dc.relation.references9. Ahn, S. H., Kim, S. H., Lee, S. G. (2004). Surface-modified silica nanoparticle–reinforced poly (ethylene 2,6-naphthalate). Journal of Applied Polymer Science, 94, 812-818. doi. org/10.1002/app.21007.
dc.relation.references10. Tang, J. C., Lin, G. L., Yang, H. C., Jiang, G. J., Chen‐Yang, Y. W. (2007). Polyimide‐silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science., 104, 4096–4105.
dc.relation.references11. Petcu, C., Purcar, V., Spataru, C.-I., Alexandrescu, E., Somoghi, R., Trică, B. Jecu, M.-L. (2017) The influence of new hydrophobic silica nanoparticles on the surface properties of the films obtained from bilayer hybrids. Nanomaterials, 7(47), 10p. doi:10.3390/nano7020047.
dc.relation.references12. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M., Tokarev, V. S. (2018). Reactive peroxide macroinitiator for crosslinking biocompatible polymers. Bulletin of Lviv Polytechnic Institute, 886, 226–235.
dc.relation.references13. Vasilyev, V. P., Glus, L. S., Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
dc.relation.references14. Toropceva, A. M., Belogorodskaya, K. V., Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.references15. Masalov, V. M., Sukhinina, N. S., Emelchenko, G. A. Colloidal particles of silicon dioxide for formation of opal-like structures. (2011). Physics of the Solid State, 53 (6), 1072–1076.
dc.relation.referencesen1. Crosby, A., Lee, J.-Y. (2007). Polymer nanocomposites: the "nano" effect on mechanical properties. Polymer Review, 47(2), 217–229.
dc.relation.referencesen2. Ramanathan, T., Abdala, A. A., Stankovich, S. (2008). Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology, 3, 327–331. doi: 10.1038/nnano.2008.96
dc.relation.referencesen3. Dubey, R., Rajesh, Y., More, M. (2015). Synthesis and Characterization of SiO2 nanoparticles via sol-gel method for industrial application. Materials Today: Proceedings, 2, 3575–3579.
dc.relation.referencesen4. Liu, Y.-L., Wu, C.-S., Chiu, Y.-S., Ho, W.-H. (2003). Preparation, thermal properties, and flame retardance of epoxy–silica hybrid resins. Journal of Polymer Science A., 41, 2354–2367. doi. org/10.1002/pola.10778.
dc.relation.referencesen5. Zhang, S., Xu, T., Wu, C. (2006). Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2,6-dimethyl-1,4-phenylene oxide). Journal of Membrane Science, 269, 142–151.
dc.relation.referencesen6. Osseo-Asare, K., Arriagada, F. J. (1990). Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids and Surfaces, 50, 321–339. doi:10.1016/0166-6622(90)80273-7.
dc.relation.referencesen7. Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Colloid and Interface Science, 26, P. 62.
dc.relation.referencesen8. Wu, T. M., Chu, M. S. (2005). Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. Journal of Applied Polymer Science, 98, 2058–2063.
dc.relation.referencesen9. Ahn, S. H., Kim, S. H., Lee, S. G. (2004). Surface-modified silica nanoparticle–reinforced poly (ethylene 2,6-naphthalate). Journal of Applied Polymer Science, 94, 812-818. doi. org/10.1002/app.21007.
dc.relation.referencesen10. Tang, J. C., Lin, G. L., Yang, H. C., Jiang, G. J., Chen‐Yang, Y. W. (2007). Polyimide‐silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. Journal of Applied Polymer Science., 104, 4096–4105.
dc.relation.referencesen11. Petcu, C., Purcar, V., Spataru, C.-I., Alexandrescu, E., Somoghi, R., Trică, B. Jecu, M.-L. (2017) The influence of new hydrophobic silica nanoparticles on the surface properties of the films obtained from bilayer hybrids. Nanomaterials, 7(47), 10p. doi:10.3390/nano7020047.
dc.relation.referencesen12. Serdiuk, V. O., Shevchuk, O. M., Pereviznyk, O. B., Bukartyk, N. M., Tokarev, V. S. (2018). Reactive peroxide macroinitiator for crosslinking biocompatible polymers. Bulletin of Lviv Polytechnic Institute, 886, 226–235.
dc.relation.referencesen13. Vasilyev, V. P., Glus, L. S., Gubar, S. P. (1985). Elaboration of gas-chromatography method of peroxide monomer analysis. Bulletin of Lviv Polytechnic Institute, 191, 24–26.
dc.relation.referencesen14. Toropceva, A. M., Belogorodskaya, K. V., Bondarenko, V. M. (1972). Laboratory Training on Chemistry and Technology of High Molecular Substances. Leningrad, USSR: Khimiya.
dc.relation.referencesen15. Masalov, V. M., Sukhinina, N. S., Emelchenko, G. A. Colloidal particles of silicon dioxide for formation of opal-like structures. (2011). Physics of the Solid State, 53 (6), 1072–1076.
dc.subjectнаночастинки
dc.subjectдіоксид силіцію
dc.subjectметод Штобера
dc.subjectреакційноздатні кополімери
dc.subjectрадикальна кополімеризація
dc.subjectадсорбція
dc.subjectnanoparticles
dc.subjectsilica
dc.subjectShtober process
dc.subjectreactive copolymers
dc.subjectradical copolymerization
dc.subjectadsorption
dc.titleSynthesis and properties of silica nanoparticles with functional polymer shell
dc.title.alternativeСинтез та властивості наночастинок діоксиду силіцію з функціональною полімерною оболонкою
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2019v2n1_Shevchuk_O_M-Synthesis_and_properties_153-158.pdf
Size:
698.19 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2019v2n1_Shevchuk_O_M-Synthesis_and_properties_153-158__COVER.png
Size:
419.52 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.09 KB
Format:
Plain Text
Description: