Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater. A Review

dc.citation.epage186
dc.citation.issue2
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage170
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationCzestochowa University of Technology
dc.contributor.authorNahurskyi, Nazar
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorBordun, Ihor
dc.contributor.authorSzymczykiewicz, Ewelina
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:47:56Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПроаналізовано методи очищення стічних вод від іонів важких металів і барвників, показано ключові переваги порошкових магніточутливих вуглецевих нанокомпозитів як адсорбентів. Розглянуто методи вибору та підготовки сировини й активаторів для синтезу таких нанокомпозитів, проаналізовано методики синтезу нанокомпозитів. Описано властивості, моделювання кінетики й ізотерм адсорбції, ефективність застосування магнітних вуглецевих нанокомпозитів для очищення стічних вод від барвників і важких металів.
dc.description.abstractThe methods of wastewater treatment from heavy metal ions and dyes are analyzed, and the key advantages of powdered magnetically sensitive carbon nanocomposites as adsorbents are shown. Methods for selecting and preparing raw materials and activators for the synthesis of such nanocomposites are considered, and methods for synthesizing nanocomposites are analyzed. The properties, modeling of adsorption kinetics and isotherms, and efficiency of magnetic carbon nanocomposites for wastewater treatment from dyes and heavy metals are described.
dc.format.extent170-186
dc.format.pages17
dc.identifier.citationMagnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater. A Review / Nazar Nahurskyi, Myroslav Malovanyy, Ihor Bordun, Ewelina Szymczykiewicz // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 170–186.
dc.identifier.citationenMagnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater. A Review / Nazar Nahurskyi, Myroslav Malovanyy, Ihor Bordun, Ewelina Szymczykiewicz // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 2. — P. 170–186.
dc.identifier.doidoi.org/10.23939/chcht18.02.170
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111796
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 2 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 2 (18), 2024
dc.relation.references[1] Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M., Alexis, F.; Guerrero, V. H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
dc.relation.references[2] Vasiichuk, V.; Kurylets, O.; Nahurskyy, O.; Kuchera, Y.; Bukliv, R.; Kalymon, Y. Obtaining New Aluminium Water Clarification Coagulant from Spent Catalyst. Ecol. Eng. Environ. Technol. 2022, 23, 47–53. https://doi.org/10.12912/27197050/147147
dc.relation.references[3] Malovanyy, M. S.; Synelnikov, S. D.; Nagurskiy, O. A.; Soloviy, K. M.; Tymchuk, I. S. Utilization of sorted secondary PET waste-raw materials in the context of sustainable development of the modern city. In IOP Conf. Ser.: Mater. Sci. Eng. 2020, 907, 012067. https://doi.org/10.1088/1757-899X/907/1/012067
dc.relation.references[4] Garg, V. K.; Kumar, R.; Gupta, R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm. 2004, 62, 1–10. https://doi.org/10.1016/j.dyepig.2003.10.016
dc.relation.references[5] Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Research in Science and Technology 2013, 5, 98–99.
dc.relation.references[6] Razzak, S. A.; Faruque, M. O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168
dc.relation.references[7] Moosavi, S.; Lai, C. W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M. R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684–20697. https://doi.org/10.1021/acsomega.0c01905
dc.relation.references[8] Nahurskyi, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Nahursky, A.; Paraniak, N.; Sabadash, V.; Malovanyy, M. Utilization of Household Plastic Waste in Technologies with Final Biodegradation. Ecol. Eng. Environ. Technol. 2022, 23, 94–100. https://doi.org/10.12912/27197050/150234
dc.relation.references[9] Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A. P.; Kim, H. Y.; Joshi, M. K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. https://doi.org/10.1016/j.jece.2021.105688
dc.relation.references[10] Nagurskyy, O.; Krylova H.; Vasiichuk, V.; Kachan, S.; Dziurakh, Y.; Nahursky, A.; Paraniak, N. Safety Usage of Encapsulated Mineral Fertilizers Based on Polymeric Waste. Ecol. Eng. Environ. Technol. 2022, 23, 156–161. https://doi.org/10.12912/27197050/143139
dc.relation.references[11] Qasem, N. A.; Mohammed, R. H.; Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
dc.relation.references[12] Tee, G. T.; Gok, X. Y.; Yong, W. F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022, 212, 113248. https://doi.org/10.1016/j.envres.2022.113248
dc.relation.references[13] Sharma, A.; Mangla, D.; Chaudhry, S. A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manage. 2022, 306, 114483. https://doi.org/10.1016/j.jenvman.2022.114483
dc.relation.references[14] Bordun, I.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of adsorption of differently charged dyes by carbon adsorbents. Desalin. Water Treat. 2023, 288, 151–158. https://doi.org/10.5004/dwt.2023.29332
dc.relation.references[15] Santhosh, C.; Daneshvar, E.; Tripathi, K. M.; Baltrėnas, P.; Kim, T., Baltrėnaitė, E.; Bhatnagar, A. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32874–32887. https://doi.org/10.1007/s11356-020-09275-1
dc.relation.references[16] Sivashankar, R.; Sathya, A. B.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration–A review. Environ. Nanotechnol. Monit. Manage. 2014, 1, 36–49. https://doi.org/10.1016/j.enmm.2014.06.001
dc.relation.references[17] Soares, S. F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A. L. Recent advances on magnetic biosorbents and their applications for water treatment. Environ. Chem. Lett. 2020, 18, 151–164. https://doi.org/10.1007/s10311-019-00931-8
dc.relation.references[18] Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K.; Inamuddin. Nanotechnology-based water quality management for wastewater treatment. Environ. Chem. Lett. 2019, 17, 65–121. https://doi.org/10.1007/s10311-018-0778-8
dc.relation.references[19] Sousa, F. L.; Daniel-da-Silva, A. L.; Silva, N. J. O.; Trindade, T. Bionanocomposites for magnetic removal of water pollutants. In Eco-friendly polymer nanocomposites: chemistry and applications, Vol 74; Springer, 2015; pp 279–310. https://doi.org/10.1007/978-81-322-2473-0_9
dc.relation.references[20] Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic adsorbents for the treatment of water/wastewater—a review. J. Water Process Eng. 2015, 7, 244–265. https://doi.org/10.1016/j.jwpe.2015.07.001
dc.relation.references[21] Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43–70. https://doi.org/10.1039/C5EW00152H
dc.relation.references[22] Adeleye, A. S.; Conway, J. R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A. A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. https://doi.org/10.1016/j.cej.2015.10.105
dc.relation.references[23] Reddy, D. H. K.; Yun, Y. S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90–111. https://doi.org/10.1016/j.ccr.2016.01.012
dc.relation.references[24] Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. https://doi.org/10.1016/J.COPBI O.2016.02.005
dc.relation.references[25] Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites, Part B 2019, 162, 538–568. https://doi.org/10.1016/j.compositesb.2018.12.075
dc.relation.references[26] Khan, S. T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. https://doi.org/10.1016/j.jhazmat.2018.09.091
dc.relation.references[27] Siddiqui, M. T. H.; Nizamuddin, S.; Baloch, H. A.; Mubarak, N. M.; Al-Ali, M.; Mazari; S. A.; Bhutto, A. W.; Abro A.; Srinivasan, M.; Griffin, G. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review. J. Environ. Chem. Eng. 2019, 7, 102812. https://doi.org/10.1016/j.jece.2018.102812
dc.relation.references[28] Rudakov, G. A.; Tsiberkin, K. B.; Ponomarev, R. S.; Henner, V. K.; Ziolkowska, D. A.; Jasinski, J. B.; Sumanasekera, G. Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. J. Magn. Magn. Mater. 2019, 472, 34–39. https://doi.org/10.1016/j.jmmm.2018.10.016
dc.relation.references[29] Bordun, I.; Chwastek, K.; Całus, D.; Chabecki, P.; Ivashchyshyn, F.; Kohut, Z.; Borysiuk, A.; Kulyk, Y. Comparison of structure and magnetic properties of Ni/C composites synthesized from wheat straw by different methods. Appl, Sci. 2021, 11, 10031. https://doi.org/10.3390/app112110031
dc.relation.references[30] Meng, F.; Yang, B.; Wang, B.; Duan, S.; Chen, Z.; Ma, W. Novel dendrimer like magnetic biosorbent based on modified orange peel waste: Adsorption–reduction behavior of arsenic. ACS Sustainable Chem. Eng. 2017, 5, 9692–9700. https://doi.org/10.1021/acssuschemeng.7b01273
dc.relation.references[31] Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3, 22–39. https://doi.org/10.1016/j.impact.2016.09.004
dc.relation.references[32] Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. https://doi.org/10.1016/j.jece.2018.10.014
dc.relation.references[33] Chen, L.; Zhou, C. H.; Fiore, S.; Tong, D. S.; Zhang, H.; Li, C. S.; Ji, S. F.; Yu, W. H. Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl. Clay Sci. 2016, 127, 143–163. https://doi.org/10.1016/j.clay.2016.04.009
dc.relation.references[34] Baghdadi, M.; Ghaffari, E.; & Aminzadeh, B. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 2016, 4, 3309–3321. https://doi.org/10.1016/j.jece.2016.06.034
dc.relation.references[35] Donia, A. M.; Atia, A. A.; Abouzayed, F. I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012, 191, 22–30. https://doi.org/10.1016/j.cej.2011.08.034
dc.relation.references[36] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. https://doi.org/10.1016/j.jhazmat.2014.05.075
dc.relation.references[37] Zhou, L.; Ji, L.; Ma, P. C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 2014, 265, 104–114. https://doi.org/10.1016/j.jhazmat.2013.11.058
dc.relation.references[38] Masoumi, A.; Hemmati, K.; Ghaemy, M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC adv. 2016, 6, 49401–49410. https://doi.org/10.1039/c6ra05873f
dc.relation.references[39] Kheshti, Z.; Hassanajili, S. Novel multifunctional mesoporous microsphere with high surface area for removal of zinc ion from aqueous solution: preparation and characterization. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1613–1626. https://doi.org/10.1007/s10904-017-0621-x
dc.relation.references[40] Li, R.; An, Q. D.; Mao, B. Q.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. PDA-meditated green synthesis of amino-modified, multifunctional magnetic hollow composites for Cr(VI) efficient removal. J. Taiwan Inst. Chem. Eng. 2017, 80, 596–606. https://doi.org/10.1016/j.jtice.2017.08.036
dc.relation.references[41] Langeroudi, M. P.; Binaeian, E. Tannin-APTES modified Fe3O4 nanoparticles as a carrier of Methotrexate drug: kinetic, isotherm and thermodynamic studies. Mater. Chem. Phys. 2018, 218, 210–217. https://doi.org/10.1016/j.matchemphys.2018.07.044
dc.relation.references[42] Marcelo, L. R.; de Gois, J. S.; da Silva, A. A.; Cesar, D. V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ. Chem. Lett. 2021, 19, 1229–1274. https://doi.org/10.1007/s10311-020-01134-2
dc.relation.references[43] Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. https://doi.org/10.1016/j.ccr.2017.11.003
dc.relation.references[44] Nadar, S. S.; Varadan, N.; Suresh, S.; Rao, P.; Ahirrao, D. J.; Adsare, S. Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications. J. Taiwan Inst. Chem. Eng. 2018, 91, 653–677. https://doi.org/10.1016/j.jtice.2018.06.029
dc.relation.references[45] Li, N.; Jiang, H. L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R. S.; Lin, J. M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC, Trends Anal. Chem. 2018, 102, 60–74. https://doi.org/10.1016/j.trac.2018.01.009
dc.relation.references[46] Soloviy, C.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.references[47] Reynel–Ávila, H. E.; Camacho-Aguilar, K. I.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; González-Ponce, H. A.; Trejo-Valencia, R. Engineered magnetic carbon-based adsorbents for the removal of water priority pollutants: an overview. Adsorpt. Sci. Technol. 2021, 1–41. https://doi.org/10.1155/2021/9917444
dc.relation.references[48] Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. https://doi.org/10.1016/j.jece.2020.104220
dc.relation.references[49] Astuti, W.; Sulistyaningsih, T.; Kusumastuti, E.; Thomas, G. Y. R. S.; Kusnadi, R. Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019, 287, 121426. https://doi.org/10.1016/j.biortech.2019.121426
dc.relation.references[50] Nejadshafiee, V.; Islami, M. R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng., C. 2019, 101, 42–52. https://doi.org/10.1016/j.msec.2019.03.081
dc.relation.references[51] Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel magnetic pomelo peel biochar for enhancing Pb (II) and Cu (II) adsorption: performance and mechanism. Water Air Soil Pollut. 2020, 231, 404. https://doi.org/10.1007/s11270-020-04788-4
dc.relation.references[52] Bordun, I.; Szymczykiewicz, E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors. Appl. Sci. 2024, 14, 677. https://doi.org/10.3390/app14020677
dc.relation.references[53] Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 2018, 6, 823–833. https://doi.org/10.1016/j.jece.2018.01.002
dc.relation.references[54] Zúñiga-Muro, N. M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Duran-Valle, C. J.; Silvestre-Albero, J.; Reynel-Avila, H. E.; Tapia-Picazo, J. C. Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water. J. Cleaner Prod. 2021, 291, 125219. https://doi.org/10.1016/j.jclepro.2020.125219
dc.relation.references[55] Singh, E.; Kumar, A.; Khapre, A.; Saikia, P.; Shukla, S. K.; Kumar, S. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. J. Water Process Eng. 2020, 33, 101095. https://doi.org/10.1016/j.jwpe.2019.101095
dc.relation.references[56] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
dc.relation.references[57] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Shapoval, P.; Nagurskyy, A. Thermooxidative Regeneration of used Mineral Motor Oils. Chem. Chem. Technol. 2020, 14, 129–134. https://doi.org/10.23939/chcht14.01.129
dc.relation.references[58] Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Colloid Interface Sci. 2011, 163, 39–52. https://doi.org/10.1016/j.cis.2011.01.006
dc.relation.references[59] Noor, N. M.; Othman, R.; Mubarak, N. M.; Abdullah, E. C. Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. J. Taiwan Inst. Chem. Eng. 2017, 78, 168–177. https://doi.org/10.1016/j.jtice.2017.05.023
dc.relation.references[60] Fakkaew, K.; Koottatep, T.; Polprasert, C. Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresour. Technol. 2015, 192, 328–334. https://doi.org/10.1016/j.biortech.2015.05.091
dc.relation.references[61] Takaya, C. A.; Parmar, K. R.; Fletcher, L. A.; Ross, A. B. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 2019, 9, 16. https://doi.org/10.3390/agriculture9010016
dc.relation.references[62] Azzaz, A. A.; Khiari, B.; Jellali, S.; Ghimbeu, C. M.; Jeguirim, M. Hydrochars production, characterization and application for wastewater treatment: A review. Renewable Resour. J. 2020, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
dc.relation.references[63] Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf., A. 2020, 588, 124372. https://doi.org/10.1016/j.colsurfa.2019.124372
dc.relation.references[64] Abdullah, R. F.; Rashid, U.; Ibrahim, M. L.; Hazmi, B.; Alharthi, F. A.; Nehdi, I. A. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable Sustainable Energy Rev. 2021, 137, 110638. https://doi.org/10.1016/j.rser.2020.110638
dc.relation.references[65] Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf. A. 2019, 563, 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062
dc.relation.references[66] Kazak, O.; Eker, Y. R.; Bingol, H.; Tor, A. Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chem. Eng. J. 2017, 325, 564-575. https://doi.org/10.1016/j.cej.2017.05.107
dc.relation.references[67] Guo, J.; Lua, A. C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon. 2000, 38, 1985–1993. https://doi.org/10.1016/S0008-6223(00)00046-4
dc.relation.references[68] Liu, W. J.; Tian, K.; He, Y. R.; Jiang, H.; Yu, H. Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ. Sci. Technol. 2014, 48, 13951–13959. https://doi.org/10.1021/es504184c
dc.relation.references[69] Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon. 2016, 99, 338–347. https://doi.org/10.1016/j.carbon.2015.12.044
dc.relation.references[70] Theydan, S. K.; Ahmed, M. J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis. 2012, 97, 116–122. https://doi.org/10.1016/j.jaap.2012.05.008
dc.relation.references[71] Oliveira, L. C.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 2009, 165, 87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064
dc.relation.references[72] Nistor, M. A.; Muntean, S. G.; Ianoș, R.; Racoviceanu, R.; Ianași, C.; Cseh, L. Adsorption of anionic dyes from wastewater onto magnetic nanocomposite powders synthesized by combustion method. Appl. Sci. 2021, 11, 9236. https://doi.org/10.3390/app11199236
dc.relation.references[73] Ianoş, R.; Păcurariu, C.; Muntean, S. G.; Muntean, E.; Nistor, M. A.; Nižňanský, D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018, 741, 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240
dc.relation.references[74] Li, Y.; Zimmerman, A. R.; He, F.; Chen, J.; Han, L.; Chen, H.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
dc.relation.references[75] Tang, S. C.; Lo, I. M. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632. https://doi.org/10.1016/j.watres.2013.02.039
dc.relation.references[76] Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour. Technol. 2018, 256, 1–10. https://doi.org/10.1016/j.biortech.2018.01.145
dc.relation.references[77] Dong, C. D.; Chen, C. W.; Hung, C. M. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour. Technol. 2017, 245, 188–195. https://doi.org/10.1016/j.biortech.2017.08.204
dc.relation.references[78] Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 2018, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
dc.relation.references[79] Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano Junior, A.; Asefa, T.; Almeida, V. C. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chem. Eng. 2016, 4, 1058–1068. https://doi.org/10.1021/acssuschemeng.5b01141
dc.relation.references[80] Adeogun, A. I.; Akande, J. A.; Idowu, M. A.; Kareem, S. O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019, 9, 160. https://doi.org/10.1007/s13201-019-1037-2
dc.relation.references[81] Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R. Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution. Surf. Interfaces. 2019, 15, 157–165. https://doi.org/10.1016/j.surfin.2019.03.003
dc.relation.references[82] Salem, S.; Teimouri, Z.; Salem, A. Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Adv. Powder Technol. 2020, 31, 4301–4309. https://doi.org/10.1016/j.apt.2020.09.007
dc.relation.references[83] Jiang, W.; Zhang, L.; Guo, X.; Yang, M.; Lu, Y.; Wang, Y.; Zheng, Y.; Wei, G. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environ. Technol. 2019, 42, 337–350. https://doi.org/10.1080/09593330.2019.1627425
dc.relation.references[84] Vieira, L. H. S.; Sabino, C. M. S.; Júnior, F. H. S.; Rocha, J. S.; Castro, M. O.; Alencar, R. S.; da Costa, l. S.; Viana, B. C.; de Paula, A. J.; Ferreira, O. P. et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758–771. https://doi.org/10.1016/j.carbon.2020.01.089
dc.relation.references[85] Eltaweil, A. S.; Mohamed, H. A.; Abd El-Monaem, E. M.; El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005
dc.relation.references[86] Oladipo, A. A.; Ifebajo, A. O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J. Environ. Manage. 2018, 209, 9–16. https://doi.org/10.1016/j.jenvman.2017.12.030
dc.relation.references[87] Geng, J.; Chang, J. Synthesis of magnetic Forsythia suspensa leaf powders for removal of metal ions and dyes from wastewater. J. Environ. Chem. Eng. 2020, 8, 104224. https://doi.org/10.1016/j.jece.2020.104224
dc.relation.references[88] Li, Y.; Zhang, X.; Zhang, P.; Liu, X.; Han, L. Facile fabrication of magnetic bio-derived chars by co-mixing with Fe3O4 nanoparticles for effective Pb2+ adsorption: properties and mechanism. J. Cleaner Prod. 2020, 262, 121350. https://doi.org/10.1016/j.jclepro.2020.121350
dc.relation.references[89] Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. https://doi.org/10.1016/j.scitotenv.2020.140283
dc.relation.references[90] Maneechakr, P.; Mongkollertlop, S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J. Environ. Chem. Eng. 2020, 8, 104467. https://doi.org/10.1016/j.jece.2020.104467
dc.relation.references[91] Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem. Eng. J. 2020, 384, 123331. https://doi.org/10.1016/j.cej.2019.123331
dc.relation.references[92] Oladipo, A. A.; Ahaka, E. O.; Gazi, M. High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environ. Sci. Pollut. Res. 2019, 26, 31887–31899. https://doi.org/10.1007/s11356-019-06321-5
dc.relation.references[93] Altaf, A. R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A. U.; Gang, l.; Pengjie, W.; Yongqiang, R.; Xiaoyu, L. One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. J. Environ. Chem. Eng. 2021, 9, 105313. https://doi.org/10.1016/j.jece.2021.105313
dc.relation.references[94] Wang, H.; Liu, Y.; Ifthikar, J.; Shi, L.; Khan, A.; Chen, Z.; Chen, Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Bioresour. Technol. 2018, 256, 269–276. https://doi.org/10.1016/j.biortech.2018.02.019
dc.relation.references[95] Demarchi, C. A.; Michel, B. S.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Kaleta, A.; Minikayev, R.; Strachowski, T.; Lipińska, L.; Dal Magro, J.; et al. Preparation, characterization, and application of magnetic activated carbon from termite feces for the adsorption of Cr (VI) from aqueous solutions. Powder Technol. 2019, 354, 432–441. https://doi.org/10.1016/j.powtec.2019.06.020
dc.relation.references[96] Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innovation. 2020, 19, 100907. https://doi.org/10.1016/j.eti.2020.100907
dc.relation.references[97] Aguayo-Villarreal, I. A.; Cortes-Arriagada, D.; Rojas-Mayorga, C. K.; Pineda-Urbina, K.; Muñiz-Valencia, R.; Gonzalez, J. Importance of the interaction adsorbent–adsorbate in the dyes adsorption process and DFT modeling. J. Mol. Struct. 2020, 1203, 127398. https://doi.org/10.1016/j.molstruc.2019.127398
dc.relation.references[98] Ali, I.; Peng, C.; Khan, Z. M.; Sultan, M.; Naz, I. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arabian J. Sci. Eng. 2018, 43, 6245–6259. https://doi.org/10.1007/s13369-018-3441-6
dc.relation.references[99] El-Gamal, S. M. A.; Amin, M. S.; Ahmed, M. A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J. Environ. Chem. Eng. 2015, 3, 1702–1712. https://doi.org/10.1016/j.jece.2015.06.022
dc.relation.references[100] Mtshatsheni, K. N. G.; Ofomaja, A. E.; Naidoo, E. B. Synthesis and optimization of reaction variables in the preparation of pinemagnetite composite for removal of methylene blue dye. S. Afr. J. Chem. Eng. 2019, 29, 33–41. https://doi.org/10.1016/j.sajce.2019.05.002
dc.relation.references[101] Nguyen, V. H.; Van, H. T.; Nguyen, V. Q.; Dam, X. V.; Hoang, L. P.; Ha, L. T. Magnetic Fe3O4 nanoparticle biochar derived from pomelo peel for reactive Red 21 adsorption from aqueous solution. J. Chem. 2020, 3080612. https://doi.org/10.1155/2020/3080612
dc.relation.references[102] Akpomie, K. G.; Conradie, J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian J. Chem. 2020, 13, 7115–7131. https://doi.org/10.1016/j.arabjc.2020.07.017
dc.relation.references[103] Olusegun, S. J.; Freitas, E. T.; Lara, L. R.; Mohallem, N. D. Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue. Environ. Technol. 2021, 42, 2163–2176. https://doi.org/10.1080/09593330.2019.1694083
dc.relation.references[104] Altıntıg, E.; Altundag, H.; Tuzen, M.; Sarı, A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 2017, 122, 151–163. https://doi.org/10.1016/j.cherd.2017.03.035
dc.relation.references[105] Zuhara, S.; Pradhan, S.; Zakaria, Y.; Shetty, A. R.; McKay, G. Removal of methylene blue from water using magnetic GTL-derived biosolids: Study of adsorption isotherms and kinetic models. Molecules 2023, 28, 1511. https://doi.org/10.3390/molecules28031511
dc.relation.references[106] Jia, Z.; Wu, L.; Zhang, D.; Han, C.; Li, M.; Wei, R. Adsorption behaviors of magnetic carbon derived from wood tar waste for removal of methylene blue dye. Diamond Relat. Mater. 2022, 130, 109408. https://doi.org/10.1016/j.diamond.2022.109408.
dc.relation.references[107] Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380. https://doi.org/10.1016/j.jhazmat.2015.09.007
dc.relation.references[108] Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 2012, 424, 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023
dc.relation.references[109] Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 2019, 366, 608–621. https://doi.org/10.1016/j.cej.2019.02.119
dc.relation.references[110] Jafari Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin. Water Treat. 2016, 57, 18782–18798. https://doi.org/10.1080/19443994.2015.1095123
dc.relation.references[111] Huong, P. T. L.; Lan, H.; An, T. T.; Van Quy, N.; Tuan, P. A.; Alonso, J.; Phan, M. H.; Le, A. T. Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As (V) adsorption and inductive heating responses. J. Alloys Compd. 2018, 739, 139–148. https://doi.org/10.1016/j.jallcom.2017.12.178
dc.relation.references[112] Chen, M.; Shao, L. L.; Li, J. J.; Pei, W. J.; Chen, M. K.; Xie, X. H. One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals. RSC Adv. 2016, 6, 35228–35238. https://doi.org/10.1039/c6ra01408a
dc.relation.references[113] Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) removal of Fe3O4@ SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 2013, 215, 461–471. https://doi.org/10.1016/j.cej.2012.11.043
dc.relation.references[114] Ren, Y.; Abbood, H. A.; He, F.; Peng, H; Huang, K. Magnetic EDTA-modified chitosan/SiO2/ Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311. https://doi.org/10.1016/j.cej.2013.04.059
dc.relation.references[115] Gutha, Y; Munagapati, V. S. Removal of Pb (II) ions by using magnetic chitosan-4-((pyridin-2-ylimino) methyl) benzaldehyde Schiff’s base. Int. J. Biol. Macromol. 2016, 93, 408–417. https://doi.org/10.1016/j.ijbiomac.2016.08.084
dc.relation.references[116] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. https://doi.org/10.1016/j.cej.2015.06.043
dc.relation.references[117] Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1–9. https://doi.org/10.1016/j.apsusc.2016.05.022
dc.relation.references[118] Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859–868. https://doi.org/10.1016/j.ijbiomac.2018.03.028
dc.relation.references[119] Pipíška, M.; Zarodňanská, S.; Horník, M.; Ďuriška, L.; Holub, M.; Šafařík, I. Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials 2020, 13, 3619. https://doi.org/10.3390/ma13163619
dc.relation.referencesen[1] Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M., Alexis, F.; Guerrero, V. H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
dc.relation.referencesen[2] Vasiichuk, V.; Kurylets, O.; Nahurskyy, O.; Kuchera, Y.; Bukliv, R.; Kalymon, Y. Obtaining New Aluminium Water Clarification Coagulant from Spent Catalyst. Ecol. Eng. Environ. Technol. 2022, 23, 47–53. https://doi.org/10.12912/27197050/147147
dc.relation.referencesen[3] Malovanyy, M. S.; Synelnikov, S. D.; Nagurskiy, O. A.; Soloviy, K. M.; Tymchuk, I. S. Utilization of sorted secondary PET waste-raw materials in the context of sustainable development of the modern city. In IOP Conf. Ser., Mater. Sci. Eng. 2020, 907, 012067. https://doi.org/10.1088/1757-899X/907/1/012067
dc.relation.referencesen[4] Garg, V. K.; Kumar, R.; Gupta, R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm. 2004, 62, 1–10. https://doi.org/10.1016/j.dyepig.2003.10.016
dc.relation.referencesen[5] Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Research in Science and Technology 2013, 5, 98–99.
dc.relation.referencesen[6] Razzak, S. A.; Faruque, M. O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168
dc.relation.referencesen[7] Moosavi, S.; Lai, C. W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M. R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684–20697. https://doi.org/10.1021/acsomega.0c01905
dc.relation.referencesen[8] Nahurskyi, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Nahursky, A.; Paraniak, N.; Sabadash, V.; Malovanyy, M. Utilization of Household Plastic Waste in Technologies with Final Biodegradation. Ecol. Eng. Environ. Technol. 2022, 23, 94–100. https://doi.org/10.12912/27197050/150234
dc.relation.referencesen[9] Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A. P.; Kim, H. Y.; Joshi, M. K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. https://doi.org/10.1016/j.jece.2021.105688
dc.relation.referencesen[10] Nagurskyy, O.; Krylova H.; Vasiichuk, V.; Kachan, S.; Dziurakh, Y.; Nahursky, A.; Paraniak, N. Safety Usage of Encapsulated Mineral Fertilizers Based on Polymeric Waste. Ecol. Eng. Environ. Technol. 2022, 23, 156–161. https://doi.org/10.12912/27197050/143139
dc.relation.referencesen[11] Qasem, N. A.; Mohammed, R. H.; Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
dc.relation.referencesen[12] Tee, G. T.; Gok, X. Y.; Yong, W. F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022, 212, 113248. https://doi.org/10.1016/j.envres.2022.113248
dc.relation.referencesen[13] Sharma, A.; Mangla, D.; Chaudhry, S. A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manage. 2022, 306, 114483. https://doi.org/10.1016/j.jenvman.2022.114483
dc.relation.referencesen[14] Bordun, I.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of adsorption of differently charged dyes by carbon adsorbents. Desalin. Water Treat. 2023, 288, 151–158. https://doi.org/10.5004/dwt.2023.29332
dc.relation.referencesen[15] Santhosh, C.; Daneshvar, E.; Tripathi, K. M.; Baltrėnas, P.; Kim, T., Baltrėnaitė, E.; Bhatnagar, A. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32874–32887. https://doi.org/10.1007/s11356-020-09275-1
dc.relation.referencesen[16] Sivashankar, R.; Sathya, A. B.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration–A review. Environ. Nanotechnol. Monit. Manage. 2014, 1, 36–49. https://doi.org/10.1016/j.enmm.2014.06.001
dc.relation.referencesen[17] Soares, S. F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A. L. Recent advances on magnetic biosorbents and their applications for water treatment. Environ. Chem. Lett. 2020, 18, 151–164. https://doi.org/10.1007/s10311-019-00931-8
dc.relation.referencesen[18] Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K.; Inamuddin. Nanotechnology-based water quality management for wastewater treatment. Environ. Chem. Lett. 2019, 17, 65–121. https://doi.org/10.1007/s10311-018-0778-8
dc.relation.referencesen[19] Sousa, F. L.; Daniel-da-Silva, A. L.; Silva, N. J. O.; Trindade, T. Bionanocomposites for magnetic removal of water pollutants. In Eco-friendly polymer nanocomposites: chemistry and applications, Vol 74; Springer, 2015; pp 279–310. https://doi.org/10.1007/978-81-322-2473-0_9
dc.relation.referencesen[20] Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic adsorbents for the treatment of water/wastewater-a review. J. Water Process Eng. 2015, 7, 244–265. https://doi.org/10.1016/j.jwpe.2015.07.001
dc.relation.referencesen[21] Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43–70. https://doi.org/10.1039/P.5EW00152H
dc.relation.referencesen[22] Adeleye, A. S.; Conway, J. R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A. A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. https://doi.org/10.1016/j.cej.2015.10.105
dc.relation.referencesen[23] Reddy, D. H. K.; Yun, Y. S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90–111. https://doi.org/10.1016/j.ccr.2016.01.012
dc.relation.referencesen[24] Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. https://doi.org/10.1016/J.COPBI O.2016.02.005
dc.relation.referencesen[25] Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites, Part B 2019, 162, 538–568. https://doi.org/10.1016/j.compositesb.2018.12.075
dc.relation.referencesen[26] Khan, S. T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. https://doi.org/10.1016/j.jhazmat.2018.09.091
dc.relation.referencesen[27] Siddiqui, M. T. H.; Nizamuddin, S.; Baloch, H. A.; Mubarak, N. M.; Al-Ali, M.; Mazari; S. A.; Bhutto, A. W.; Abro A.; Srinivasan, M.; Griffin, G. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review. J. Environ. Chem. Eng. 2019, 7, 102812. https://doi.org/10.1016/j.jece.2018.102812
dc.relation.referencesen[28] Rudakov, G. A.; Tsiberkin, K. B.; Ponomarev, R. S.; Henner, V. K.; Ziolkowska, D. A.; Jasinski, J. B.; Sumanasekera, G. Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. J. Magn. Magn. Mater. 2019, 472, 34–39. https://doi.org/10.1016/j.jmmm.2018.10.016
dc.relation.referencesen[29] Bordun, I.; Chwastek, K.; Całus, D.; Chabecki, P.; Ivashchyshyn, F.; Kohut, Z.; Borysiuk, A.; Kulyk, Y. Comparison of structure and magnetic properties of Ni/C composites synthesized from wheat straw by different methods. Appl, Sci. 2021, 11, 10031. https://doi.org/10.3390/app112110031
dc.relation.referencesen[30] Meng, F.; Yang, B.; Wang, B.; Duan, S.; Chen, Z.; Ma, W. Novel dendrimer like magnetic biosorbent based on modified orange peel waste: Adsorption–reduction behavior of arsenic. ACS Sustainable Chem. Eng. 2017, 5, 9692–9700. https://doi.org/10.1021/acssuschemeng.7b01273
dc.relation.referencesen[31] Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3, 22–39. https://doi.org/10.1016/j.impact.2016.09.004
dc.relation.referencesen[32] Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. https://doi.org/10.1016/j.jece.2018.10.014
dc.relation.referencesen[33] Chen, L.; Zhou, C. H.; Fiore, S.; Tong, D. S.; Zhang, H.; Li, C. S.; Ji, S. F.; Yu, W. H. Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl. Clay Sci. 2016, 127, 143–163. https://doi.org/10.1016/j.clay.2016.04.009
dc.relation.referencesen[34] Baghdadi, M.; Ghaffari, E.; & Aminzadeh, B. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 2016, 4, 3309–3321. https://doi.org/10.1016/j.jece.2016.06.034
dc.relation.referencesen[35] Donia, A. M.; Atia, A. A.; Abouzayed, F. I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012, 191, 22–30. https://doi.org/10.1016/j.cej.2011.08.034
dc.relation.referencesen[36] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. https://doi.org/10.1016/j.jhazmat.2014.05.075
dc.relation.referencesen[37] Zhou, L.; Ji, L.; Ma, P. C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 2014, 265, 104–114. https://doi.org/10.1016/j.jhazmat.2013.11.058
dc.relation.referencesen[38] Masoumi, A.; Hemmati, K.; Ghaemy, M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC adv. 2016, 6, 49401–49410. https://doi.org/10.1039/P.6ra05873f
dc.relation.referencesen[39] Kheshti, Z.; Hassanajili, S. Novel multifunctional mesoporous microsphere with high surface area for removal of zinc ion from aqueous solution: preparation and characterization. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1613–1626. https://doi.org/10.1007/s10904-017-0621-x
dc.relation.referencesen[40] Li, R.; An, Q. D.; Mao, B. Q.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. PDA-meditated green synthesis of amino-modified, multifunctional magnetic hollow composites for Cr(VI) efficient removal. J. Taiwan Inst. Chem. Eng. 2017, 80, 596–606. https://doi.org/10.1016/j.jtice.2017.08.036
dc.relation.referencesen[41] Langeroudi, M. P.; Binaeian, E. Tannin-APTES modified Fe3O4 nanoparticles as a carrier of Methotrexate drug: kinetic, isotherm and thermodynamic studies. Mater. Chem. Phys. 2018, 218, 210–217. https://doi.org/10.1016/j.matchemphys.2018.07.044
dc.relation.referencesen[42] Marcelo, L. R.; de Gois, J. S.; da Silva, A. A.; Cesar, D. V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ. Chem. Lett. 2021, 19, 1229–1274. https://doi.org/10.1007/s10311-020-01134-2
dc.relation.referencesen[43] Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. https://doi.org/10.1016/j.ccr.2017.11.003
dc.relation.referencesen[44] Nadar, S. S.; Varadan, N.; Suresh, S.; Rao, P.; Ahirrao, D. J.; Adsare, S. Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications. J. Taiwan Inst. Chem. Eng. 2018, 91, 653–677. https://doi.org/10.1016/j.jtice.2018.06.029
dc.relation.referencesen[45] Li, N.; Jiang, H. L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R. S.; Lin, J. M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC, Trends Anal. Chem. 2018, 102, 60–74. https://doi.org/10.1016/j.trac.2018.01.009
dc.relation.referencesen[46] Soloviy, C.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.referencesen[47] Reynel–Ávila, H. E.; Camacho-Aguilar, K. I.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; González-Ponce, H. A.; Trejo-Valencia, R. Engineered magnetic carbon-based adsorbents for the removal of water priority pollutants: an overview. Adsorpt. Sci. Technol. 2021, 1–41. https://doi.org/10.1155/2021/9917444
dc.relation.referencesen[48] Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. https://doi.org/10.1016/j.jece.2020.104220
dc.relation.referencesen[49] Astuti, W.; Sulistyaningsih, T.; Kusumastuti, E.; Thomas, G. Y. R. S.; Kusnadi, R. Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019, 287, 121426. https://doi.org/10.1016/j.biortech.2019.121426
dc.relation.referencesen[50] Nejadshafiee, V.; Islami, M. R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng., P. 2019, 101, 42–52. https://doi.org/10.1016/j.msec.2019.03.081
dc.relation.referencesen[51] Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel magnetic pomelo peel biochar for enhancing Pb (II) and Cu (II) adsorption: performance and mechanism. Water Air Soil Pollut. 2020, 231, 404. https://doi.org/10.1007/s11270-020-04788-4
dc.relation.referencesen[52] Bordun, I.; Szymczykiewicz, E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors. Appl. Sci. 2024, 14, 677. https://doi.org/10.3390/app14020677
dc.relation.referencesen[53] Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 2018, 6, 823–833. https://doi.org/10.1016/j.jece.2018.01.002
dc.relation.referencesen[54] Zúñiga-Muro, N. M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Duran-Valle, C. J.; Silvestre-Albero, J.; Reynel-Avila, H. E.; Tapia-Picazo, J. C. Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water. J. Cleaner Prod. 2021, 291, 125219. https://doi.org/10.1016/j.jclepro.2020.125219
dc.relation.referencesen[55] Singh, E.; Kumar, A.; Khapre, A.; Saikia, P.; Shukla, S. K.; Kumar, S. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. J. Water Process Eng. 2020, 33, 101095. https://doi.org/10.1016/j.jwpe.2019.101095
dc.relation.referencesen[56] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
dc.relation.referencesen[57] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Shapoval, P.; Nagurskyy, A. Thermooxidative Regeneration of used Mineral Motor Oils. Chem. Chem. Technol. 2020, 14, 129–134. https://doi.org/10.23939/chcht14.01.129
dc.relation.referencesen[58] Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process-A review. Adv. Colloid Interface Sci. 2011, 163, 39–52. https://doi.org/10.1016/j.cis.2011.01.006
dc.relation.referencesen[59] Noor, N. M.; Othman, R.; Mubarak, N. M.; Abdullah, E. C. Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. J. Taiwan Inst. Chem. Eng. 2017, 78, 168–177. https://doi.org/10.1016/j.jtice.2017.05.023
dc.relation.referencesen[60] Fakkaew, K.; Koottatep, T.; Polprasert, C. Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresour. Technol. 2015, 192, 328–334. https://doi.org/10.1016/j.biortech.2015.05.091
dc.relation.referencesen[61] Takaya, C. A.; Parmar, K. R.; Fletcher, L. A.; Ross, A. B. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 2019, 9, 16. https://doi.org/10.3390/agriculture9010016
dc.relation.referencesen[62] Azzaz, A. A.; Khiari, B.; Jellali, S.; Ghimbeu, C. M.; Jeguirim, M. Hydrochars production, characterization and application for wastewater treatment: A review. Renewable Resour. J. 2020, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
dc.relation.referencesen[63] Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf., A. 2020, 588, 124372. https://doi.org/10.1016/j.colsurfa.2019.124372
dc.relation.referencesen[64] Abdullah, R. F.; Rashid, U.; Ibrahim, M. L.; Hazmi, B.; Alharthi, F. A.; Nehdi, I. A. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable Sustainable Energy Rev. 2021, 137, 110638. https://doi.org/10.1016/j.rser.2020.110638
dc.relation.referencesen[65] Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf. A. 2019, 563, 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062
dc.relation.referencesen[66] Kazak, O.; Eker, Y. R.; Bingol, H.; Tor, A. Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chem. Eng. J. 2017, 325, 564-575. https://doi.org/10.1016/j.cej.2017.05.107
dc.relation.referencesen[67] Guo, J.; Lua, A. C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon. 2000, 38, 1985–1993. https://doi.org/10.1016/S0008-6223(00)00046-4
dc.relation.referencesen[68] Liu, W. J.; Tian, K.; He, Y. R.; Jiang, H.; Yu, H. Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ. Sci. Technol. 2014, 48, 13951–13959. https://doi.org/10.1021/es504184c
dc.relation.referencesen[69] Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon. 2016, 99, 338–347. https://doi.org/10.1016/j.carbon.2015.12.044
dc.relation.referencesen[70] Theydan, S. K.; Ahmed, M. J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis. 2012, 97, 116–122. https://doi.org/10.1016/j.jaap.2012.05.008
dc.relation.referencesen[71] Oliveira, L. C.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 2009, 165, 87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064
dc.relation.referencesen[72] Nistor, M. A.; Muntean, S. G.; Ianoș, R.; Racoviceanu, R.; Ianași, C.; Cseh, L. Adsorption of anionic dyes from wastewater onto magnetic nanocomposite powders synthesized by combustion method. Appl. Sci. 2021, 11, 9236. https://doi.org/10.3390/app11199236
dc.relation.referencesen[73] Ianoş, R.; Păcurariu, C.; Muntean, S. G.; Muntean, E.; Nistor, M. A.; Nižňanský, D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018, 741, 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240
dc.relation.referencesen[74] Li, Y.; Zimmerman, A. R.; He, F.; Chen, J.; Han, L.; Chen, H.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
dc.relation.referencesen[75] Tang, S. C.; Lo, I. M. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632. https://doi.org/10.1016/j.watres.2013.02.039
dc.relation.referencesen[76] Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour. Technol. 2018, 256, 1–10. https://doi.org/10.1016/j.biortech.2018.01.145
dc.relation.referencesen[77] Dong, C. D.; Chen, C. W.; Hung, C. M. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour. Technol. 2017, 245, 188–195. https://doi.org/10.1016/j.biortech.2017.08.204
dc.relation.referencesen[78] Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 2018, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
dc.relation.referencesen[79] Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano Junior, A.; Asefa, T.; Almeida, V. C. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chem. Eng. 2016, 4, 1058–1068. https://doi.org/10.1021/acssuschemeng.5b01141
dc.relation.referencesen[80] Adeogun, A. I.; Akande, J. A.; Idowu, M. A.; Kareem, S. O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019, 9, 160. https://doi.org/10.1007/s13201-019-1037-2
dc.relation.referencesen[81] Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R. Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution. Surf. Interfaces. 2019, 15, 157–165. https://doi.org/10.1016/j.surfin.2019.03.003
dc.relation.referencesen[82] Salem, S.; Teimouri, Z.; Salem, A. Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Adv. Powder Technol. 2020, 31, 4301–4309. https://doi.org/10.1016/j.apt.2020.09.007
dc.relation.referencesen[83] Jiang, W.; Zhang, L.; Guo, X.; Yang, M.; Lu, Y.; Wang, Y.; Zheng, Y.; Wei, G. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environ. Technol. 2019, 42, 337–350. https://doi.org/10.1080/09593330.2019.1627425
dc.relation.referencesen[84] Vieira, L. H. S.; Sabino, C. M. S.; Júnior, F. H. S.; Rocha, J. S.; Castro, M. O.; Alencar, R. S.; da Costa, l. S.; Viana, B. C.; de Paula, A. J.; Ferreira, O. P. et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758–771. https://doi.org/10.1016/j.carbon.2020.01.089
dc.relation.referencesen[85] Eltaweil, A. S.; Mohamed, H. A.; Abd El-Monaem, E. M.; El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005
dc.relation.referencesen[86] Oladipo, A. A.; Ifebajo, A. O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J. Environ. Manage. 2018, 209, 9–16. https://doi.org/10.1016/j.jenvman.2017.12.030
dc.relation.referencesen[87] Geng, J.; Chang, J. Synthesis of magnetic Forsythia suspensa leaf powders for removal of metal ions and dyes from wastewater. J. Environ. Chem. Eng. 2020, 8, 104224. https://doi.org/10.1016/j.jece.2020.104224
dc.relation.referencesen[88] Li, Y.; Zhang, X.; Zhang, P.; Liu, X.; Han, L. Facile fabrication of magnetic bio-derived chars by co-mixing with Fe3O4 nanoparticles for effective Pb2+ adsorption: properties and mechanism. J. Cleaner Prod. 2020, 262, 121350. https://doi.org/10.1016/j.jclepro.2020.121350
dc.relation.referencesen[89] Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. https://doi.org/10.1016/j.scitotenv.2020.140283
dc.relation.referencesen[90] Maneechakr, P.; Mongkollertlop, S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J. Environ. Chem. Eng. 2020, 8, 104467. https://doi.org/10.1016/j.jece.2020.104467
dc.relation.referencesen[91] Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem. Eng. J. 2020, 384, 123331. https://doi.org/10.1016/j.cej.2019.123331
dc.relation.referencesen[92] Oladipo, A. A.; Ahaka, E. O.; Gazi, M. High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environ. Sci. Pollut. Res. 2019, 26, 31887–31899. https://doi.org/10.1007/s11356-019-06321-5
dc.relation.referencesen[93] Altaf, A. R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A. U.; Gang, l.; Pengjie, W.; Yongqiang, R.; Xiaoyu, L. One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. J. Environ. Chem. Eng. 2021, 9, 105313. https://doi.org/10.1016/j.jece.2021.105313
dc.relation.referencesen[94] Wang, H.; Liu, Y.; Ifthikar, J.; Shi, L.; Khan, A.; Chen, Z.; Chen, Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with g-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Bioresour. Technol. 2018, 256, 269–276. https://doi.org/10.1016/j.biortech.2018.02.019
dc.relation.referencesen[95] Demarchi, C. A.; Michel, B. S.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Kaleta, A.; Minikayev, R.; Strachowski, T.; Lipińska, L.; Dal Magro, J.; et al. Preparation, characterization, and application of magnetic activated carbon from termite feces for the adsorption of Cr (VI) from aqueous solutions. Powder Technol. 2019, 354, 432–441. https://doi.org/10.1016/j.powtec.2019.06.020
dc.relation.referencesen[96] Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innovation. 2020, 19, 100907. https://doi.org/10.1016/j.eti.2020.100907
dc.relation.referencesen[97] Aguayo-Villarreal, I. A.; Cortes-Arriagada, D.; Rojas-Mayorga, C. K.; Pineda-Urbina, K.; Muñiz-Valencia, R.; Gonzalez, J. Importance of the interaction adsorbent–adsorbate in the dyes adsorption process and DFT modeling. J. Mol. Struct. 2020, 1203, 127398. https://doi.org/10.1016/j.molstruc.2019.127398
dc.relation.referencesen[98] Ali, I.; Peng, C.; Khan, Z. M.; Sultan, M.; Naz, I. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arabian J. Sci. Eng. 2018, 43, 6245–6259. https://doi.org/10.1007/s13369-018-3441-6
dc.relation.referencesen[99] El-Gamal, S. M. A.; Amin, M. S.; Ahmed, M. A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J. Environ. Chem. Eng. 2015, 3, 1702–1712. https://doi.org/10.1016/j.jece.2015.06.022
dc.relation.referencesen[100] Mtshatsheni, K. N. G.; Ofomaja, A. E.; Naidoo, E. B. Synthesis and optimization of reaction variables in the preparation of pinemagnetite composite for removal of methylene blue dye. S. Afr. J. Chem. Eng. 2019, 29, 33–41. https://doi.org/10.1016/j.sajce.2019.05.002
dc.relation.referencesen[101] Nguyen, V. H.; Van, H. T.; Nguyen, V. Q.; Dam, X. V.; Hoang, L. P.; Ha, L. T. Magnetic Fe3O4 nanoparticle biochar derived from pomelo peel for reactive Red 21 adsorption from aqueous solution. J. Chem. 2020, 3080612. https://doi.org/10.1155/2020/3080612
dc.relation.referencesen[102] Akpomie, K. G.; Conradie, J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian J. Chem. 2020, 13, 7115–7131. https://doi.org/10.1016/j.arabjc.2020.07.017
dc.relation.referencesen[103] Olusegun, S. J.; Freitas, E. T.; Lara, L. R.; Mohallem, N. D. Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue. Environ. Technol. 2021, 42, 2163–2176. https://doi.org/10.1080/09593330.2019.1694083
dc.relation.referencesen[104] Altıntıg, E.; Altundag, H.; Tuzen, M.; Sarı, A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 2017, 122, 151–163. https://doi.org/10.1016/j.cherd.2017.03.035
dc.relation.referencesen[105] Zuhara, S.; Pradhan, S.; Zakaria, Y.; Shetty, A. R.; McKay, G. Removal of methylene blue from water using magnetic GTL-derived biosolids: Study of adsorption isotherms and kinetic models. Molecules 2023, 28, 1511. https://doi.org/10.3390/molecules28031511
dc.relation.referencesen[106] Jia, Z.; Wu, L.; Zhang, D.; Han, C.; Li, M.; Wei, R. Adsorption behaviors of magnetic carbon derived from wood tar waste for removal of methylene blue dye. Diamond Relat. Mater. 2022, 130, 109408. https://doi.org/10.1016/j.diamond.2022.109408.
dc.relation.referencesen[107] Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380. https://doi.org/10.1016/j.jhazmat.2015.09.007
dc.relation.referencesen[108] Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 2012, 424, 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023
dc.relation.referencesen[109] Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 2019, 366, 608–621. https://doi.org/10.1016/j.cej.2019.02.119
dc.relation.referencesen[110] Jafari Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin. Water Treat. 2016, 57, 18782–18798. https://doi.org/10.1080/19443994.2015.1095123
dc.relation.referencesen[111] Huong, P. T. L.; Lan, H.; An, T. T.; Van Quy, N.; Tuan, P. A.; Alonso, J.; Phan, M. H.; Le, A. T. Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As (V) adsorption and inductive heating responses. J. Alloys Compd. 2018, 739, 139–148. https://doi.org/10.1016/j.jallcom.2017.12.178
dc.relation.referencesen[112] Chen, M.; Shao, L. L.; Li, J. J.; Pei, W. J.; Chen, M. K.; Xie, X. H. One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals. RSC Adv. 2016, 6, 35228–35238. https://doi.org/10.1039/P.6ra01408a
dc.relation.referencesen[113] Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) removal of Fe3O4@ SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 2013, 215, 461–471. https://doi.org/10.1016/j.cej.2012.11.043
dc.relation.referencesen[114] Ren, Y.; Abbood, H. A.; He, F.; Peng, H; Huang, K. Magnetic EDTA-modified chitosan/SiO2/ Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311. https://doi.org/10.1016/j.cej.2013.04.059
dc.relation.referencesen[115] Gutha, Y; Munagapati, V. S. Removal of Pb (II) ions by using magnetic chitosan-4-((pyridin-2-ylimino) methyl) benzaldehyde Schiff’s base. Int. J. Biol. Macromol. 2016, 93, 408–417. https://doi.org/10.1016/j.ijbiomac.2016.08.084
dc.relation.referencesen[116] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. https://doi.org/10.1016/j.cej.2015.06.043
dc.relation.referencesen[117] Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1–9. https://doi.org/10.1016/j.apsusc.2016.05.022
dc.relation.referencesen[118] Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859–868. https://doi.org/10.1016/j.ijbiomac.2018.03.028
dc.relation.referencesen[119] Pipíška, M.; Zarodňanská, S.; Horník, M.; Ďuriška, L.; Holub, M.; Šafařík, I. Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials 2020, 13, 3619. https://doi.org/10.3390/ma13163619
dc.relation.urihttps://doi.org/10.1016/j.eti.2021.101504
dc.relation.urihttps://doi.org/10.12912/27197050/147147
dc.relation.urihttps://doi.org/10.1088/1757-899X/907/1/012067
dc.relation.urihttps://doi.org/10.1016/j.dyepig.2003.10.016
dc.relation.urihttps://doi.org/10.1016/j.envadv.2022.100168
dc.relation.urihttps://doi.org/10.1021/acsomega.0c01905
dc.relation.urihttps://doi.org/10.12912/27197050/150234
dc.relation.urihttps://doi.org/10.1016/j.jece.2021.105688
dc.relation.urihttps://doi.org/10.12912/27197050/143139
dc.relation.urihttps://doi.org/10.1038/s41545-021-00127-0
dc.relation.urihttps://doi.org/10.1016/j.envres.2022.113248
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2022.114483
dc.relation.urihttps://doi.org/10.5004/dwt.2023.29332
dc.relation.urihttps://doi.org/10.1007/s11356-020-09275-1
dc.relation.urihttps://doi.org/10.1016/j.enmm.2014.06.001
dc.relation.urihttps://doi.org/10.1007/s10311-019-00931-8
dc.relation.urihttps://doi.org/10.1007/s10311-018-0778-8
dc.relation.urihttps://doi.org/10.1007/978-81-322-2473-0_9
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2015.07.001
dc.relation.urihttps://doi.org/10.1039/C5EW00152H
dc.relation.urihttps://doi.org/10.1016/j.cej.2015.10.105
dc.relation.urihttps://doi.org/10.1016/j.ccr.2016.01.012
dc.relation.urihttps://doi.org/10.1016/J.COPBI
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2018.12.075
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2018.09.091
dc.relation.urihttps://doi.org/10.1016/j.jece.2018.102812
dc.relation.urihttps://doi.org/10.1016/j.jmmm.2018.10.016
dc.relation.urihttps://doi.org/10.3390/app112110031
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.7b01273
dc.relation.urihttps://doi.org/10.1016/j.impact.2016.09.004
dc.relation.urihttps://doi.org/10.1016/j.jece.2018.10.014
dc.relation.urihttps://doi.org/10.1016/j.clay.2016.04.009
dc.relation.urihttps://doi.org/10.1016/j.jece.2016.06.034
dc.relation.urihttps://doi.org/10.1016/j.cej.2011.08.034
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2014.05.075
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.11.058
dc.relation.urihttps://doi.org/10.1039/c6ra05873f
dc.relation.urihttps://doi.org/10.1007/s10904-017-0621-x
dc.relation.urihttps://doi.org/10.1016/j.jtice.2017.08.036
dc.relation.urihttps://doi.org/10.1016/j.matchemphys.2018.07.044
dc.relation.urihttps://doi.org/10.1007/s10311-020-01134-2
dc.relation.urihttps://doi.org/10.1016/j.ccr.2017.11.003
dc.relation.urihttps://doi.org/10.1016/j.jtice.2018.06.029
dc.relation.urihttps://doi.org/10.1016/j.trac.2018.01.009
dc.relation.urihttps://doi.org/10.24425/jwld.2020.135043
dc.relation.urihttps://doi.org/10.1155/2021/9917444
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.104220
dc.relation.urihttps://doi.org/10.1016/j.biortech.2019.121426
dc.relation.urihttps://doi.org/10.1016/j.msec.2019.03.081
dc.relation.urihttps://doi.org/10.1007/s11270-020-04788-4
dc.relation.urihttps://doi.org/10.3390/app14020677
dc.relation.urihttps://doi.org/10.1016/j.jece.2018.01.002
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.125219
dc.relation.urihttps://doi.org/10.1016/j.jwpe.2019.101095
dc.relation.urihttps://doi.org/10.23939/chcht15.02.239
dc.relation.urihttps://doi.org/10.23939/chcht14.01.129
dc.relation.urihttps://doi.org/10.1016/j.cis.2011.01.006
dc.relation.urihttps://doi.org/10.1016/j.jtice.2017.05.023
dc.relation.urihttps://doi.org/10.1016/j.biortech.2015.05.091
dc.relation.urihttps://doi.org/10.3390/agriculture9010016
dc.relation.urihttps://doi.org/10.1016/j.rser.2020.109882
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2019.124372
dc.relation.urihttps://doi.org/10.1016/j.rser.2020.110638
dc.relation.urihttps://doi.org/10.1016/j.colsurfa.2018.11.062
dc.relation.urihttps://doi.org/10.1016/j.cej.2017.05.107
dc.relation.urihttps://doi.org/10.1016/S0008-6223(00)00046-4
dc.relation.urihttps://doi.org/10.1021/es504184c
dc.relation.urihttps://doi.org/10.1016/j.carbon.2015.12.044
dc.relation.urihttps://doi.org/10.1016/j.jaap.2012.05.008
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.09.064
dc.relation.urihttps://doi.org/10.3390/app11199236
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2018.01.240
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2020.137972
dc.relation.urihttps://doi.org/10.1016/j.watres.2013.02.039
dc.relation.urihttps://doi.org/10.1016/j.biortech.2018.01.145
dc.relation.urihttps://doi.org/10.1016/j.biortech.2017.08.204
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2017.10.058
dc.relation.urihttps://doi.org/10.1021/acssuschemeng.5b01141
dc.relation.urihttps://doi.org/10.1007/s13201-019-1037-2
dc.relation.urihttps://doi.org/10.1016/j.surfin.2019.03.003
dc.relation.urihttps://doi.org/10.1016/j.apt.2020.09.007
dc.relation.urihttps://doi.org/10.1080/09593330.2019.1627425
dc.relation.urihttps://doi.org/10.1016/j.carbon.2020.01.089
dc.relation.urihttps://doi.org/10.1016/j.apt.2020.01.005
dc.relation.urihttps://doi.org/10.1016/j.jenvman.2017.12.030
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.104224
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.121350
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2020.140283
dc.relation.urihttps://doi.org/10.1016/j.jece.2020.104467
dc.relation.urihttps://doi.org/10.1016/j.cej.2019.123331
dc.relation.urihttps://doi.org/10.1007/s11356-019-06321-5
dc.relation.urihttps://doi.org/10.1016/j.jece.2021.105313
dc.relation.urihttps://doi.org/10.1016/j.biortech.2018.02.019
dc.relation.urihttps://doi.org/10.1016/j.powtec.2019.06.020
dc.relation.urihttps://doi.org/10.1016/j.eti.2020.100907
dc.relation.urihttps://doi.org/10.1016/j.molstruc.2019.127398
dc.relation.urihttps://doi.org/10.1007/s13369-018-3441-6
dc.relation.urihttps://doi.org/10.1016/j.jece.2015.06.022
dc.relation.urihttps://doi.org/10.1016/j.sajce.2019.05.002
dc.relation.urihttps://doi.org/10.1155/2020/3080612
dc.relation.urihttps://doi.org/10.1016/j.arabjc.2020.07.017
dc.relation.urihttps://doi.org/10.1080/09593330.2019.1694083
dc.relation.urihttps://doi.org/10.1016/j.cherd.2017.03.035
dc.relation.urihttps://doi.org/10.3390/molecules28031511
dc.relation.urihttps://doi.org/10.1016/j.diamond.2022.109408
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2015.09.007
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2012.02.023
dc.relation.urihttps://doi.org/10.1016/j.cej.2019.02.119
dc.relation.urihttps://doi.org/10.1080/19443994.2015.1095123
dc.relation.urihttps://doi.org/10.1016/j.jallcom.2017.12.178
dc.relation.urihttps://doi.org/10.1039/c6ra01408a
dc.relation.urihttps://doi.org/10.1016/j.cej.2012.11.043
dc.relation.urihttps://doi.org/10.1016/j.cej.2013.04.059
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2016.08.084
dc.relation.urihttps://doi.org/10.1016/j.cej.2015.06.043
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2016.05.022
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2018.03.028
dc.relation.urihttps://doi.org/10.3390/ma13163619
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Nahurskyi N., Malovanyy M., Bordun I., Szymczykiewicz E., 2024
dc.subjectадсорбція
dc.subjectвуглецевий нанокомпозит
dc.subjectмагніточутливий адсорбент
dc.subjectочищення стічних вод
dc.subjectважкі метали
dc.subjectбарвники
dc.subjectadsorption
dc.subjectcarbon nanocomposite
dc.subjectmagnetically sensitive adsorbent
dc.subjectwastewater treatment
dc.subjectheavy metals
dc.subjectdyes
dc.titleMagnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater. A Review
dc.title.alternativeМагніточутливі нанокомпозити на вуглецевій основі для очищення стічних вод від барвників і важких металів. Огляд
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n2_Nahurskyi_N-Magnetically_Sensitive_170-186.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n2_Nahurskyi_N-Magnetically_Sensitive_170-186__COVER.png
Size:
515.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: