Effect of Borosilicate Glass Wastes and Synthetic Silica on Cement Products Properties
dc.citation.epage | 318 | |
dc.citation.issue | 2 | |
dc.citation.spage | 312 | |
dc.contributor.affiliation | Warsaw University of Technology | |
dc.contributor.author | Kotsay, Galyna | |
dc.contributor.author | Brzóska, Aleksandra | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T10:19:08Z | |
dc.date.available | 2024-01-09T10:19:08Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Представлено результати дослідження впливу відходів боросилікатного скла на властивості цементного розчину. Встановлено, що боросилікатне скло містить в три рази менше лугів ніж содово-вапнякове скло і близько 12% оксиду бору, тому дане скло має в три рази вищу пуцоланову активність. Синтетичний кремнезем застосовано для підвищення активності скла. Показано, що заміна 1% боросилікатного скла синтетичним кремнеземом підвищує пуцоланову активність до 9,4 мг CaO/г добавки. Встановлено, що додавання 5% боросилікатного скла замість цементу, зменшує стандартну міцність на стиск на 20 %. Однак, використання комплексної добавки боросилікатного скла (2–5 %) і синтетичного кремнезему (0,5 %) дає можливість збільшити початкову міцність на стиск цементних розчинів до 10 %. | |
dc.description.abstract | This paper presents the findings of research study on the effect of borosilicate glass wastes on properties of cement paste and mortar. The borosilicate glass contains three times less alkali than soda-lime glass and about 12 % of boron oxide, so pozzolanic activity of borosilicate glass is three times higher compared to sodalime glass. In order to increase the pozzolanic activity of glass precipitated synthetic silica was used. Mathematical models were used in order to test the effect of synthetic silica on pozzolanic activity of borosilicate glass. Test results indicate that replacement of 1 % of borosilicate glass by synthetic silica increased the pozzolanic activity up to 9.4 mg CaO/g of additive. By adding 5 % of borosilicate glass instead of cement, the standard compressive strength is reduced by about 20 %. However, complex additive of borosilicate glass (2–5 %) and synthetic silica (0.5 %) increased initial compressive strength of cement mortars to 10 %. | |
dc.format.extent | 312-318 | |
dc.format.pages | 7 | |
dc.identifier.citation | Kotsay G. Effect of Borosilicate Glass Wastes and Synthetic Silica on Cement Products Properties / Galyna Kotsay, Aleksandra Brzóska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 312–318. | |
dc.identifier.citationen | Kotsay G. Effect of Borosilicate Glass Wastes and Synthetic Silica on Cement Products Properties / Galyna Kotsay, Aleksandra Brzóska // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 2. — P. 312–318. | |
dc.identifier.doi | doi.org/10.23939/chcht15.02.312 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60720 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (15), 2021 | |
dc.relation.references | [1] Najduchowska M., Rożycka K., Rolka G.: Prace ICiMB, 2014, 17, 46. | |
dc.relation.references | [2] Sadiqul Islam G., Rahman M.: Int. J. Sustain. Built Environ., 2017, 6, 37. https://doi.org/10.1016/j.ijsbe.2016.10.005 | |
dc.relation.references | [3] Shevchenko W., Kotsay G.: Chem. Chem. Technol., 2015, 9, 231. https://doi.org/10.23939/chcht09.02.231. | |
dc.relation.references | [4] Gorospe K., Booya E., Ghaednia H., Das S.: Constr. Build. Mater., 2019, 210, 301. https://doi.org/10.1016/j.conbuildmat.2019.03.192 | |
dc.relation.references | [5] Lee J.-C., Jang B.-K., Shon C.-S. et al.:J. Clean. Prod., 2019, 210, 638. https://doi.org/10.1016/j.jclepro.2018.11.033 | |
dc.relation.references | [6] Gómez-Soberón J., Cabrera-Covarrubias F., Almaral-Sánchez J., Gómez-Soberón M.: Adv. Mater. Sci. Eng., 2018, 4, 1. https://doi.org/10.1155/2018/1386946 | |
dc.relation.references | [7] Guo M.-Z., Tu Z., Poon C.: Constr. Build. Mater., 2018, 179, 138. https://doi.org/10.1016/j.conbuildmat.2018.05.188 | |
dc.relation.references | [8] Elaqra H., Al-Afghany M., Abo-Hasseira A.: Constr. Build. Mater., 2018, 179, 326. https://doi.org/10.1016/j.conbuildmat.2018.05.263 | |
dc.relation.references | [9] Lee G., Poon C., Wong Y., Ling T.: Constr. Build. Mater., 2013, 38, 638. https://doi.org/10.1016/j.conbuildmat.2012.09.017 | |
dc.relation.references | [10] Mrowiec K., Kubica S., Kuczyńska H.: Chemik, 2011, 11, 1212. | |
dc.relation.references | [11] Shao Y., Lefort T., Mora S., Rodriguez D.: Cement Concrete Res., 2000, 30, 91. https://doi.org/10.1016/S0008-8846(99)00213-6 | |
dc.relation.references | [12] Shevchenko V., Kotsai G.: Glass Phys. Chem., 2017, 43, 595. https://doi.org/10.1134/S1087659617060141 | |
dc.relation.references | [13] Shevchenko V., Kotsai G.: Glass Phys. Chem., 2016, 42, https://doi.org/10.1134/S1087659616030123 | |
dc.relation.references | [14] Scholze H.: Glass: Nature, Structure, and Properties. SpringerVerlag 1990. | |
dc.relation.references | [15] Yaschyshyn J.: Technologia skla. Fizyka i Khimia Skla. Politechnika Lvivska, Lviv 2008. | |
dc.relation.references | [16] Łukowski P.: Modyfikacja Materialowa Betonu. Polski cement, Krakow 2016. | |
dc.relation.references | [17] Kurdowski W.: Chemia cement i betonu. Wydawnictwo Polski cement, Warszawa 2010. | |
dc.relation.references | [18] Davraz M.: Acta Phys. Pol. A, 2015, 128, 26. https://doi.org/10.12693/APhysPolA.128.B-26 | |
dc.relation.references | [19] Kharita M., Yousef S., Alnassar M.: Progr. Nucl. Energ., 2011, 53, 207. https://doi.org/10.1016/j.pnucene.2010.09.012 | |
dc.relation.references | [20] www.continentaltrade.com.pl/szklo-borokrzemowe | |
dc.relation.references | [21] Certificate of quality silica WL-160 (Powder). N 20111128. http://en.well-t.com.cn | |
dc.relation.references | [22] EN 196-2:2013: Cement test methods--Part 2: Chemical Analysis of cement. https://standards.globalspec.com/std/1611318/EN 20196-2 | |
dc.relation.references | [23] Butt J., Sychev M., Timashev V.: Prakticum po Khimicheskoi Technologii Sviazuyushchikh. Vyshaya schkola, Moskva 1973. | |
dc.relation.references | [24] EN 196-3:2009. Cement test methods-Part 3: Determination of constraint times and volume constant. https://standards.globalspec.com/std/10061462/EN 20196-3. | |
dc.relation.references | [25] PN-EN 196-1: 2016. Cement Test Methods-Part 1: Determination ofstrength. https://standards.globalspec.com/std/10010985/EN 20196-1 | |
dc.relation.references | [26] Kotsay G.: Quest. Chem. Chem. Technol., 2011, 5, 142. | |
dc.relation.references | [27] Kotsay G., Kuźniecki M., Pilarczyk S.: Teoria i Praktyka Budownictwa, 2013, 755, 189. | |
dc.relation.references | [28] Kurdowski W.: Chemia Cementu i Betonu. Wydaw. PWN, Warszawa 2010. | |
dc.relation.referencesen | [1] Najduchowska M., Rożycka K., Rolka G., Prace ICiMB, 2014, 17, 46. | |
dc.relation.referencesen | [2] Sadiqul Islam G., Rahman M., Int. J. Sustain. Built Environ., 2017, 6, 37. https://doi.org/10.1016/j.ijsbe.2016.10.005 | |
dc.relation.referencesen | [3] Shevchenko W., Kotsay G., Chem. Chem. Technol., 2015, 9, 231. https://doi.org/10.23939/chcht09.02.231. | |
dc.relation.referencesen | [4] Gorospe K., Booya E., Ghaednia H., Das S., Constr. Build. Mater., 2019, 210, 301. https://doi.org/10.1016/j.conbuildmat.2019.03.192 | |
dc.relation.referencesen | [5] Lee J.-C., Jang B.-K., Shon C.-S. et al.:J. Clean. Prod., 2019, 210, 638. https://doi.org/10.1016/j.jclepro.2018.11.033 | |
dc.relation.referencesen | [6] Gómez-Soberón J., Cabrera-Covarrubias F., Almaral-Sánchez J., Gómez-Soberón M., Adv. Mater. Sci. Eng., 2018, 4, 1. https://doi.org/10.1155/2018/1386946 | |
dc.relation.referencesen | [7] Guo M.-Z., Tu Z., Poon C., Constr. Build. Mater., 2018, 179, 138. https://doi.org/10.1016/j.conbuildmat.2018.05.188 | |
dc.relation.referencesen | [8] Elaqra H., Al-Afghany M., Abo-Hasseira A., Constr. Build. Mater., 2018, 179, 326. https://doi.org/10.1016/j.conbuildmat.2018.05.263 | |
dc.relation.referencesen | [9] Lee G., Poon C., Wong Y., Ling T., Constr. Build. Mater., 2013, 38, 638. https://doi.org/10.1016/j.conbuildmat.2012.09.017 | |
dc.relation.referencesen | [10] Mrowiec K., Kubica S., Kuczyńska H., Chemik, 2011, 11, 1212. | |
dc.relation.referencesen | [11] Shao Y., Lefort T., Mora S., Rodriguez D., Cement Concrete Res., 2000, 30, 91. https://doi.org/10.1016/S0008-8846(99)00213-6 | |
dc.relation.referencesen | [12] Shevchenko V., Kotsai G., Glass Phys. Chem., 2017, 43, 595. https://doi.org/10.1134/S1087659617060141 | |
dc.relation.referencesen | [13] Shevchenko V., Kotsai G., Glass Phys. Chem., 2016, 42, https://doi.org/10.1134/S1087659616030123 | |
dc.relation.referencesen | [14] Scholze H., Glass: Nature, Structure, and Properties. SpringerVerlag 1990. | |
dc.relation.referencesen | [15] Yaschyshyn J., Technologia skla. Fizyka i Khimia Skla. Politechnika Lvivska, Lviv 2008. | |
dc.relation.referencesen | [16] Łukowski P., Modyfikacja Materialowa Betonu. Polski cement, Krakow 2016. | |
dc.relation.referencesen | [17] Kurdowski W., Chemia cement i betonu. Wydawnictwo Polski cement, Warszawa 2010. | |
dc.relation.referencesen | [18] Davraz M., Acta Phys. Pol. A, 2015, 128, 26. https://doi.org/10.12693/APhysPolA.128.B-26 | |
dc.relation.referencesen | [19] Kharita M., Yousef S., Alnassar M., Progr. Nucl. Energ., 2011, 53, 207. https://doi.org/10.1016/j.pnucene.2010.09.012 | |
dc.relation.referencesen | [20] www.continentaltrade.com.pl/szklo-borokrzemowe | |
dc.relation.referencesen | [21] Certificate of quality silica WL-160 (Powder). N 20111128. http://en.well-t.com.cn | |
dc.relation.referencesen | [22] EN 196-2:2013: Cement test methods--Part 2: Chemical Analysis of cement. https://standards.globalspec.com/std/1611318/EN 20196-2 | |
dc.relation.referencesen | [23] Butt J., Sychev M., Timashev V., Prakticum po Khimicheskoi Technologii Sviazuyushchikh. Vyshaya schkola, Moskva 1973. | |
dc.relation.referencesen | [24] EN 196-3:2009. Cement test methods-Part 3: Determination of constraint times and volume constant. https://standards.globalspec.com/std/10061462/EN 20196-3. | |
dc.relation.referencesen | [25] PN-EN 196-1: 2016. Cement Test Methods-Part 1: Determination ofstrength. https://standards.globalspec.com/std/10010985/EN 20196-1 | |
dc.relation.referencesen | [26] Kotsay G., Quest. Chem. Chem. Technol., 2011, 5, 142. | |
dc.relation.referencesen | [27] Kotsay G., Kuźniecki M., Pilarczyk S., Teoria i Praktyka Budownictwa, 2013, 755, 189. | |
dc.relation.referencesen | [28] Kurdowski W., Chemia Cementu i Betonu. Wydaw. PWN, Warszawa 2010. | |
dc.relation.uri | https://doi.org/10.1016/j.ijsbe.2016.10.005 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.02.231 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.03.192 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2018.11.033 | |
dc.relation.uri | https://doi.org/10.1155/2018/1386946 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.05.188 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.05.263 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2012.09.017 | |
dc.relation.uri | https://doi.org/10.1016/S0008-8846(99)00213-6 | |
dc.relation.uri | https://doi.org/10.1134/S1087659617060141 | |
dc.relation.uri | https://doi.org/10.1134/S1087659616030123 | |
dc.relation.uri | https://doi.org/10.12693/APhysPolA.128.B-26 | |
dc.relation.uri | https://doi.org/10.1016/j.pnucene.2010.09.012 | |
dc.relation.uri | http://en.well-t.com.cn | |
dc.relation.uri | https://standards.globalspec.com/std/1611318/EN | |
dc.relation.uri | https://standards.globalspec.com/std/10061462/EN | |
dc.relation.uri | https://standards.globalspec.com/std/10010985/EN | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Kotsay G., Brzóska A., 2021 | |
dc.subject | боросилікатне скло | |
dc.subject | синтетичний кремнезем | |
dc.subject | пуцоланова активність | |
dc.subject | міцність | |
dc.subject | borosilicate glass | |
dc.subject | synthetic silica | |
dc.subject | pozzolanic activity | |
dc.subject | strength | |
dc.title | Effect of Borosilicate Glass Wastes and Synthetic Silica on Cement Products Properties | |
dc.title.alternative | Вплив відходів боросилікатного скла і синтетичного кремнезему на властивості цементних продуктів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1