Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term

dc.citation.epage1118
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1109
dc.contributor.affiliationУніверситет Абдельмалека Ессааді
dc.contributor.affiliationAbdelmalek Essaadi University
dc.contributor.authorБузелмат, А.
dc.contributor.authorЕль Багурі, Х.
dc.contributor.authorГміра, А.
dc.contributor.authorBouzelmate, A.
dc.contributor.authorEl Baghouri, H.
dc.contributor.authorGmira, A.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:52Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractМетою цієї статті є дослідження еліптичного сингулярного рівняння Лапласа ∆u −|∇ u| q +up−u−δ = 0 в RN , де N > 1, 1 < q < p та δ > 2. Основний наш вклад полягає у встановленні існування строго додатного розв’язку та аналізі певних властивостей його асимптотичної поведінки, зокрема, коли він є монотонним.
dc.description.abstractThe objective of this paper is to investigate the elliptic singular Laplacian equation ∆u −|∇ u| q + up− u−δ = 0 in RN , where N > 1, 1 < q < p and δ > 2. Our main contributions consist of establishing the existence of an entire strictly positive solution and analyzing certain properties of its asymptotic behavior, particularly when it exhibits monotonicity.
dc.format.extent1109-1118
dc.format.pages10
dc.identifier.citationBouzelmate A. Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term / A. Bouzelmate, H. El Baghouri, A. Gmira // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1109–1118.
dc.identifier.citationenBouzelmate A. Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term / A. Bouzelmate, H. El Baghouri, A. Gmira // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1109–1118.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1109
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64063
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Serrin J., Zou H. Existence and nonexistence results for ground states of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis. 121, 101–130 (1992).
dc.relation.references[2] Quittner Q. On global existence and stationary solutions for two classes of semilinear parabolic equations. Commentationes Mathematicae Universitatis Carolinae. 34 (1), 105–124 (1993).
dc.relation.references[3] Souplet P., Tayachi S., Weissler F. B. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana University Mathematics Journal. 45 (3), 655–682 (1996).
dc.relation.references[4] Souplet P. Recent results and open problems on parabolic. Electronic Journal of Differential Equations. 34, 105–124 (1993).
dc.relation.references[5] Bidaut-V`eron M.-F., V`eron L. Local behaviour of the solutions of the Chipot-Weissler equation. Preprint arXiv:2303.08074 (2023).
dc.relation.references[6] Gkikas K. T., Nguyen P.-T. Elliptic equations with Hardy potential and gradient-dependent nonlinearity. Advanced Nonlinear Studies. 20 (2), 399–435 (2020).
dc.relation.references[7] Gkikas K., Nguyen P.-T. Semilinear elliptic equations with Hardy potential and gradient nonlinearity. Revista Matem´atica Iberoamericana. 36 (4), 1207–1256 (2020).
dc.relation.references[8] Fowler R. H. The form near infinity of real continuos solutions of a certain differential equation of second order. Quarterly Journal of Mathematics. 45, 289–350 (1914).
dc.relation.references[9] Fowler R. H. The solutions of Emden’s and similar differential equation. Monthly Notices of the Royal Astronomical Society. 91 (1), 63–91 (1920).
dc.relation.references[10] Fowler R. H. Further studies on Emden’s and similar differential equation. Quarterly Journal of Mathematics. 2 (1), 259–288 (1931).
dc.relation.references[11] Lions P. L. Isolated singularities in semilinear problems. Journal of Differential Equations. 38 (3), 441–450 (1980).
dc.relation.references[12] Aviles P. Local behavior of positive solutions of some elliptic equation. Communications in Mathematical Physics. 108, 177–192 (1987).
dc.relation.references[13] Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics. 34 (4), 525–598 (1980).
dc.relation.references[14] Caffarelli L. A., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics. 42, 271–297 (1989).
dc.relation.references[15] D`avila J., Montenegro M. Radial solutions of an elliptic equation with singular nonlinearity. Journal of Mathematical Analysis and Applications. 352 (1), 360–379 (2009).
dc.relation.references[16] Junping S., Miaoxin Y. On a singular nonlinear semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 128 (6), 1389–1401 (1998).
dc.relation.references[17] Ouyang T., Shi J., Yao M. Exact multiplicity and bifurcation of solutions of a singular equation. Preprint (1996).
dc.relation.references[18] Amann H. Ordinary Differential Equations. Walter de Gruyter, Belin, New York (1996).
dc.relation.references[19] Bouzelmate A., Gmira A., Reys G. On the Radial Solutions of a Degenerate Elliptic Equation with Convection Term. International Journal of Mathematical Analysis. 1 (20), 975–993 (2007).
dc.relation.references[20] Bouzelmate A., Gmira A. Singular solutions of an inhomogeneous elliptic equation. Nonlinear Functional Analysis and Applications. 26 (2), 237–272 (2021).
dc.relation.references[21] Ni W.-M., Serrin J. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Communications on Pure and Applied Mathematics. 39 (3), 379–399 (1986).
dc.relation.referencesen[1] Serrin J., Zou H. Existence and nonexistence results for ground states of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis. 121, 101–130 (1992).
dc.relation.referencesen[2] Quittner Q. On global existence and stationary solutions for two classes of semilinear parabolic equations. Commentationes Mathematicae Universitatis Carolinae. 34 (1), 105–124 (1993).
dc.relation.referencesen[3] Souplet P., Tayachi S., Weissler F. B. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana University Mathematics Journal. 45 (3), 655–682 (1996).
dc.relation.referencesen[4] Souplet P. Recent results and open problems on parabolic. Electronic Journal of Differential Equations. 34, 105–124 (1993).
dc.relation.referencesen[5] Bidaut-V`eron M.-F., V`eron L. Local behaviour of the solutions of the Chipot-Weissler equation. Preprint arXiv:2303.08074 (2023).
dc.relation.referencesen[6] Gkikas K. T., Nguyen P.-T. Elliptic equations with Hardy potential and gradient-dependent nonlinearity. Advanced Nonlinear Studies. 20 (2), 399–435 (2020).
dc.relation.referencesen[7] Gkikas K., Nguyen P.-T. Semilinear elliptic equations with Hardy potential and gradient nonlinearity. Revista Matem´atica Iberoamericana. 36 (4), 1207–1256 (2020).
dc.relation.referencesen[8] Fowler R. H. The form near infinity of real continuos solutions of a certain differential equation of second order. Quarterly Journal of Mathematics. 45, 289–350 (1914).
dc.relation.referencesen[9] Fowler R. H. The solutions of Emden’s and similar differential equation. Monthly Notices of the Royal Astronomical Society. 91 (1), 63–91 (1920).
dc.relation.referencesen[10] Fowler R. H. Further studies on Emden’s and similar differential equation. Quarterly Journal of Mathematics. 2 (1), 259–288 (1931).
dc.relation.referencesen[11] Lions P. L. Isolated singularities in semilinear problems. Journal of Differential Equations. 38 (3), 441–450 (1980).
dc.relation.referencesen[12] Aviles P. Local behavior of positive solutions of some elliptic equation. Communications in Mathematical Physics. 108, 177–192 (1987).
dc.relation.referencesen[13] Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics. 34 (4), 525–598 (1980).
dc.relation.referencesen[14] Caffarelli L. A., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics. 42, 271–297 (1989).
dc.relation.referencesen[15] D`avila J., Montenegro M. Radial solutions of an elliptic equation with singular nonlinearity. Journal of Mathematical Analysis and Applications. 352 (1), 360–379 (2009).
dc.relation.referencesen[16] Junping S., Miaoxin Y. On a singular nonlinear semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 128 (6), 1389–1401 (1998).
dc.relation.referencesen[17] Ouyang T., Shi J., Yao M. Exact multiplicity and bifurcation of solutions of a singular equation. Preprint (1996).
dc.relation.referencesen[18] Amann H. Ordinary Differential Equations. Walter de Gruyter, Belin, New York (1996).
dc.relation.referencesen[19] Bouzelmate A., Gmira A., Reys G. On the Radial Solutions of a Degenerate Elliptic Equation with Convection Term. International Journal of Mathematical Analysis. 1 (20), 975–993 (2007).
dc.relation.referencesen[20] Bouzelmate A., Gmira A. Singular solutions of an inhomogeneous elliptic equation. Nonlinear Functional Analysis and Applications. 26 (2), 237–272 (2021).
dc.relation.referencesen[21] Ni W.-M., Serrin J. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Communications on Pure and Applied Mathematics. 39 (3), 379–399 (1986).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectеліптичне рівняння
dc.subjectзнакозмінний потенціал
dc.subjectградієнтний член
dc.subjectрадіальний розв’язок
dc.subjectтеорема Банаха про нерухому точку
dc.subjectенергетична функція
dc.subjectосциляційні методи
dc.subjectelliptic equation
dc.subjectsign-changing potential
dc.subjectgradient term
dc.subjectradial solution
dc.subjectBanach fixed point theorem
dc.subjectenergy function
dc.subjectoscillation methods
dc.titlePositive solutions of an elliptic equation involving a sign-changing potential and a gradient term
dc.title.alternativeДодатні розв’язки еліптичного рівняння зі знакозмінним потенціалом та градієнтним членом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Bouzelmate_A-Positive_solutions_1109-1118.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Bouzelmate_A-Positive_solutions_1109-1118__COVER.png
Size:
385.37 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: