Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term
dc.citation.epage | 1118 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 1109 | |
dc.contributor.affiliation | Університет Абдельмалека Ессааді | |
dc.contributor.affiliation | Abdelmalek Essaadi University | |
dc.contributor.author | Бузелмат, А. | |
dc.contributor.author | Ель Багурі, Х. | |
dc.contributor.author | Гміра, А. | |
dc.contributor.author | Bouzelmate, A. | |
dc.contributor.author | El Baghouri, H. | |
dc.contributor.author | Gmira, A. | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2025-03-10T09:21:52Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Метою цієї статті є дослідження еліптичного сингулярного рівняння Лапласа ∆u −|∇ u| q +up−u−δ = 0 в RN , де N > 1, 1 < q < p та δ > 2. Основний наш вклад полягає у встановленні існування строго додатного розв’язку та аналізі певних властивостей його асимптотичної поведінки, зокрема, коли він є монотонним. | |
dc.description.abstract | The objective of this paper is to investigate the elliptic singular Laplacian equation ∆u −|∇ u| q + up− u−δ = 0 in RN , where N > 1, 1 < q < p and δ > 2. Our main contributions consist of establishing the existence of an entire strictly positive solution and analyzing certain properties of its asymptotic behavior, particularly when it exhibits monotonicity. | |
dc.format.extent | 1109-1118 | |
dc.format.pages | 10 | |
dc.identifier.citation | Bouzelmate A. Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term / A. Bouzelmate, H. El Baghouri, A. Gmira // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1109–1118. | |
dc.identifier.citationen | Bouzelmate A. Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term / A. Bouzelmate, H. El Baghouri, A. Gmira // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1109–1118. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.04.1109 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64063 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 4 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (10), 2023 | |
dc.relation.references | [1] Serrin J., Zou H. Existence and nonexistence results for ground states of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis. 121, 101–130 (1992). | |
dc.relation.references | [2] Quittner Q. On global existence and stationary solutions for two classes of semilinear parabolic equations. Commentationes Mathematicae Universitatis Carolinae. 34 (1), 105–124 (1993). | |
dc.relation.references | [3] Souplet P., Tayachi S., Weissler F. B. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana University Mathematics Journal. 45 (3), 655–682 (1996). | |
dc.relation.references | [4] Souplet P. Recent results and open problems on parabolic. Electronic Journal of Differential Equations. 34, 105–124 (1993). | |
dc.relation.references | [5] Bidaut-V`eron M.-F., V`eron L. Local behaviour of the solutions of the Chipot-Weissler equation. Preprint arXiv:2303.08074 (2023). | |
dc.relation.references | [6] Gkikas K. T., Nguyen P.-T. Elliptic equations with Hardy potential and gradient-dependent nonlinearity. Advanced Nonlinear Studies. 20 (2), 399–435 (2020). | |
dc.relation.references | [7] Gkikas K., Nguyen P.-T. Semilinear elliptic equations with Hardy potential and gradient nonlinearity. Revista Matem´atica Iberoamericana. 36 (4), 1207–1256 (2020). | |
dc.relation.references | [8] Fowler R. H. The form near infinity of real continuos solutions of a certain differential equation of second order. Quarterly Journal of Mathematics. 45, 289–350 (1914). | |
dc.relation.references | [9] Fowler R. H. The solutions of Emden’s and similar differential equation. Monthly Notices of the Royal Astronomical Society. 91 (1), 63–91 (1920). | |
dc.relation.references | [10] Fowler R. H. Further studies on Emden’s and similar differential equation. Quarterly Journal of Mathematics. 2 (1), 259–288 (1931). | |
dc.relation.references | [11] Lions P. L. Isolated singularities in semilinear problems. Journal of Differential Equations. 38 (3), 441–450 (1980). | |
dc.relation.references | [12] Aviles P. Local behavior of positive solutions of some elliptic equation. Communications in Mathematical Physics. 108, 177–192 (1987). | |
dc.relation.references | [13] Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics. 34 (4), 525–598 (1980). | |
dc.relation.references | [14] Caffarelli L. A., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics. 42, 271–297 (1989). | |
dc.relation.references | [15] D`avila J., Montenegro M. Radial solutions of an elliptic equation with singular nonlinearity. Journal of Mathematical Analysis and Applications. 352 (1), 360–379 (2009). | |
dc.relation.references | [16] Junping S., Miaoxin Y. On a singular nonlinear semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 128 (6), 1389–1401 (1998). | |
dc.relation.references | [17] Ouyang T., Shi J., Yao M. Exact multiplicity and bifurcation of solutions of a singular equation. Preprint (1996). | |
dc.relation.references | [18] Amann H. Ordinary Differential Equations. Walter de Gruyter, Belin, New York (1996). | |
dc.relation.references | [19] Bouzelmate A., Gmira A., Reys G. On the Radial Solutions of a Degenerate Elliptic Equation with Convection Term. International Journal of Mathematical Analysis. 1 (20), 975–993 (2007). | |
dc.relation.references | [20] Bouzelmate A., Gmira A. Singular solutions of an inhomogeneous elliptic equation. Nonlinear Functional Analysis and Applications. 26 (2), 237–272 (2021). | |
dc.relation.references | [21] Ni W.-M., Serrin J. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Communications on Pure and Applied Mathematics. 39 (3), 379–399 (1986). | |
dc.relation.referencesen | [1] Serrin J., Zou H. Existence and nonexistence results for ground states of quasilinear elliptic equations. Archive for Rational Mechanics and Analysis. 121, 101–130 (1992). | |
dc.relation.referencesen | [2] Quittner Q. On global existence and stationary solutions for two classes of semilinear parabolic equations. Commentationes Mathematicae Universitatis Carolinae. 34 (1), 105–124 (1993). | |
dc.relation.referencesen | [3] Souplet P., Tayachi S., Weissler F. B. Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term. Indiana University Mathematics Journal. 45 (3), 655–682 (1996). | |
dc.relation.referencesen | [4] Souplet P. Recent results and open problems on parabolic. Electronic Journal of Differential Equations. 34, 105–124 (1993). | |
dc.relation.referencesen | [5] Bidaut-V`eron M.-F., V`eron L. Local behaviour of the solutions of the Chipot-Weissler equation. Preprint arXiv:2303.08074 (2023). | |
dc.relation.referencesen | [6] Gkikas K. T., Nguyen P.-T. Elliptic equations with Hardy potential and gradient-dependent nonlinearity. Advanced Nonlinear Studies. 20 (2), 399–435 (2020). | |
dc.relation.referencesen | [7] Gkikas K., Nguyen P.-T. Semilinear elliptic equations with Hardy potential and gradient nonlinearity. Revista Matem´atica Iberoamericana. 36 (4), 1207–1256 (2020). | |
dc.relation.referencesen | [8] Fowler R. H. The form near infinity of real continuos solutions of a certain differential equation of second order. Quarterly Journal of Mathematics. 45, 289–350 (1914). | |
dc.relation.referencesen | [9] Fowler R. H. The solutions of Emden’s and similar differential equation. Monthly Notices of the Royal Astronomical Society. 91 (1), 63–91 (1920). | |
dc.relation.referencesen | [10] Fowler R. H. Further studies on Emden’s and similar differential equation. Quarterly Journal of Mathematics. 2 (1), 259–288 (1931). | |
dc.relation.referencesen | [11] Lions P. L. Isolated singularities in semilinear problems. Journal of Differential Equations. 38 (3), 441–450 (1980). | |
dc.relation.referencesen | [12] Aviles P. Local behavior of positive solutions of some elliptic equation. Communications in Mathematical Physics. 108, 177–192 (1987). | |
dc.relation.referencesen | [13] Gidas B., Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics. 34 (4), 525–598 (1980). | |
dc.relation.referencesen | [14] Caffarelli L. A., Gidas B., Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Communications on Pure and Applied Mathematics. 42, 271–297 (1989). | |
dc.relation.referencesen | [15] D`avila J., Montenegro M. Radial solutions of an elliptic equation with singular nonlinearity. Journal of Mathematical Analysis and Applications. 352 (1), 360–379 (2009). | |
dc.relation.referencesen | [16] Junping S., Miaoxin Y. On a singular nonlinear semilinear elliptic problem. Proceedings of the Royal Society of Edinburgh. Section A: Mathematics. 128 (6), 1389–1401 (1998). | |
dc.relation.referencesen | [17] Ouyang T., Shi J., Yao M. Exact multiplicity and bifurcation of solutions of a singular equation. Preprint (1996). | |
dc.relation.referencesen | [18] Amann H. Ordinary Differential Equations. Walter de Gruyter, Belin, New York (1996). | |
dc.relation.referencesen | [19] Bouzelmate A., Gmira A., Reys G. On the Radial Solutions of a Degenerate Elliptic Equation with Convection Term. International Journal of Mathematical Analysis. 1 (20), 975–993 (2007). | |
dc.relation.referencesen | [20] Bouzelmate A., Gmira A. Singular solutions of an inhomogeneous elliptic equation. Nonlinear Functional Analysis and Applications. 26 (2), 237–272 (2021). | |
dc.relation.referencesen | [21] Ni W.-M., Serrin J. Nonexistence theorems for singular solutions of quasilinear partial differential equations. Communications on Pure and Applied Mathematics. 39 (3), 379–399 (1986). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | еліптичне рівняння | |
dc.subject | знакозмінний потенціал | |
dc.subject | градієнтний член | |
dc.subject | радіальний розв’язок | |
dc.subject | теорема Банаха про нерухому точку | |
dc.subject | енергетична функція | |
dc.subject | осциляційні методи | |
dc.subject | elliptic equation | |
dc.subject | sign-changing potential | |
dc.subject | gradient term | |
dc.subject | radial solution | |
dc.subject | Banach fixed point theorem | |
dc.subject | energy function | |
dc.subject | oscillation methods | |
dc.title | Positive solutions of an elliptic equation involving a sign-changing potential and a gradient term | |
dc.title.alternative | Додатні розв’язки еліптичного рівняння зі знакозмінним потенціалом та градієнтним членом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1