Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity
dc.citation.epage | 654 | |
dc.citation.issue | 3 | |
dc.citation.spage | 646 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Znak, Zenovii | |
dc.contributor.author | Kochubei, Viktoria | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:52:01Z | |
dc.date.available | 2024-02-12T08:52:01Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Проаналізовано сфери використання природного клиноптилоліту. Зроблено акцент на його застосуванні в технологіях води та в медичній практиці. Наведено результати дослідження дегідратації клиноптилоліту за різних температур. Встановлено вплив температури активації клиноптилоліту на його сорбційну ємність щодо іонів срібла. Досліджено вплив модифікування іонами та високодисперсним частинками срібла на сорбційну здатність різних фракцій цеоліту щодо води. | |
dc.description.abstract | Areas of use of natural clinoptilolite were analyzed. The emphasis was placed on its application in water technology and medical practice. The results of the study of the dehydration of clinoptilolite at different temperatures were presented. The influence of the activation temperature of clinoptilolite on its sorption capacity for silver ions was determined. The effect of modification with ions and highly dispersed silver particles on the sorption capacity of various zeolite fractions with respect to water was investigated. | |
dc.format.extent | 646-654 | |
dc.format.pages | 9 | |
dc.identifier.citation | Znak Z. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity / Zenovii Znak, Viktoria Kochubei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 646–654. | |
dc.identifier.citationen | Znak Z. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity / Zenovii Znak, Viktoria Kochubei // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 646–654. | |
dc.identifier.doi | doi.org/10.23939/chcht17.03.646 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61270 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (17), 2023 | |
dc.relation.references | [1] Scott, M.A.; Kathleen, A.C.; Prabir, K.D. Handbook of Zeolite Science and Technology; Marcel Dekker Inc. USA, 2003. | |
dc.relation.references | [2] Kulprathipanja, S. Zeolites in Industrial Separation and Cataly-sis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010. https://doi.org/10.1002/9783527629565 | |
dc.relation.references | [3] Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. https://doi.org/10.1080/23311916.2020.1782623 | |
dc.relation.references | [4] Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namiesnik, J. Study of the Selection Mechanism of Heavy Metal (Pb2+, Cu2+, Ni2+ and Cd2+) Adsorption on Clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21-28. https://doi.org/10.1016/j.jcis.2006.07.068 | |
dc.relation.references | [5] Wingenfelder, U.; Hansen. C.; Furrer, G.; Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 2005, 39, 4606-4613. https://doi.org/10.1021/es048482s | |
dc.relation.references | [6] AL-Oud, S.S.; Ghoneim, A.M.; Nadeem, M.A.; Al Harbi, S. Application Efficiency of Clinoptilolite Natural Zeolite for Pb2+ and Cu2+ Removal from Wastewater. Wulfenia 2015, 22, 317-332. | |
dc.relation.references | [7] Bogdanov, B.; Georgiev, D.; Angelova, K.; Yaneva, K. Natural Zeolites: Clinoptilolite Review, International Science Conference, Stara Zagora (Bulgaria). International Science conference "Econom-ics and Society development on the Base of Knowledge", June 4-5, 2009; Natural & Mathematical Science: Stara Zagora (Bulgaria), 2009, 6-11. | |
dc.relation.references | [8] Pavelic, S.K.; Medica, J.S.; Gumbarevic, D.; Filoševic, A.; Pržulj, N.; Pavelic, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front. Pharmacol. 2018, 9, 1350. https://doi.org/10.3389/fphar.2018.01350 | |
dc.relation.references | [9] Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Review. Molecules 2019, 24, 1517. https://doi.org/10.3390/ molecules24081517 | |
dc.relation.references | [10] Pavelic, K.; Hadzija, M. Medical applications of zeolites. In Handbook of Zeolites Science and Technology; New York, NY: CRC Press, 2003; pp 1143-1173. | |
dc.relation.references | [11] Application of Natural Zeolites in Medicine and Cosmetology – ZEOMEDCOS. Proceedings; SWB: Baku-London, 2010. | |
dc.relation.references | [12] Kuntyi, О.; Zozulya, G.; Kytsya, A. “Green” Synthesis of Metallic Nanoparticles by Sonoelectrochemical and Sonogalvanic Replacement Methods. Bioinorg Chem Appl 2021, 2021, 9830644. https://doi.org/10.1155/2021/9830644 | |
dc.relation.references | [13] Semenyuk, N.; Dudok, G.; Skorokhoda, T.; Sadova, U.; Sko-rokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone and their Application for Osteop-lastic Composites. Chem. Chem. Technol. 2022, 16, 404-410. https://doi.org/10.23939/chcht16.03.404 | |
dc.relation.references | [14] Dudok, G.; Semenyuk, N.; Kysil, K.; Ilkiv, I.; Skorokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone. Proceedings of the 2021 IEEE 11th Interna-tional Conference "Nanomaterials: Applications and Properties", Odesa, Ukraine, September 05-11, 2021, NAP 2021, pp 1-4. https://doi.org/10.1109/NAP51885.2021.9568511 | |
dc.relation.references | [15] Semenyuk, N.; Dudok, G.; Skorokhoda, T.; Suberlyak, O. Regularities of Obtaining and Properties of the Hydroxyapatite Filled Porous Composites Based on Polyvinylpyrrolidone. Easter-nEuropean J. Enterp. Technol. 2014, 5(6), 12-17. https://doi.org/10.15587/1729-4061.2014.27701 | |
dc.relation.references | [16] Kuntyi, O.; Mazur, A.; Kytsya, A.; Karpenko, O.; Bazylyak, L.; Mertsalo, I.; Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802-807. https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.references | [17] Zozulya; G.; Kuntyi; O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Re-placement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499. https://doi.org/10.23939/chcht15.04.493 | |
dc.relation.references | [18] Shepida, M.; Kuntyi, O.; Sozanskyi, M.; Sukhatskiy, Y. Sonoelectrochemical Synthesis of Antibacterial Active Silver Nanoparticles in Rhamnolipid Slution. Adv. Mater. Sci. Eng. 2021, 2021, ID 7754523. https://doi.org/10.1155/2021/7754523 | |
dc.relation.references | [19] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Kytsya, A.; Bazylyak, L. Synthesis of Silver Nanoparticles by Sonogalvanic Replacement on Aluminium Powder in Sodium Polyacrylate Solutions. Ultrason Sonochem 2022, 84, 105951. https://doi.org/10.1016/j.ultsonch.2022.105951 | |
dc.relation.references | [20] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based on Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem. Chem. Technol. 2016, 10, 187-192. https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.references | [21] Znak Z.О.; Коrnii S.А.; Маshtaler A.S.; Zin O.І. Production of Nanoporous Zeolites Modified by Silver Ions with Antibacterial Properties. Mater Sci 2021, 56, 536-543. https://doi.org/10.1007/s11003-021-00461-1 | |
dc.relation.references | [22] Znak, Z.; Zin, O.; Mashtaler, A.; Korniy, S.; Sukhatskiy, Yu.; Gogate, Parag R.; Mnykh, R.; Thanekar, P. Improved Modification of Clinoptilolite with Silver Using Ultrasonic Radiation. Ultrason Sonochem 2021, 73, 105496. https://doi.org/10.1016/j.ultsonch.2021.105496 | |
dc.relation.references | [23] Yaholnyk S.H.; Kochubei V.V.; Trotskyi V.I. Vplyv popered-noi termichnoi obrobky na adsorbtsiinu zdatnist zakarpatskoho klynoptylolitu. Zhurnal ahrobiolohii ta ekolohii 2005, 2, 173-176. | |
dc.relation.references | [24] Kochubei, V.V.; Yaholnyk, S.G.; Kniaz, S.V.; Parashchuk, L.Y.; Malovanyy, M.S. Research into the Influence of Activation Conditions of Transcarpathian Clinoptilolite on its Adsorption Capacity. Voprosy khimii i khimicheskoi tekhnologii 2020, 4, 80-87. https://doi.org/10.32434/0321-4095-2020-131-4-80-87 | |
dc.relation.references | [25] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386 | |
dc.relation.references | [26] Zakordonskyi, V.; Vasylechko, V.; Stashchuk, P.; Hryshchuk, H. Termodesorbtsiia Vody y Fdsorbtsiini Vlastyvosti Zakarpatskykh Tseolitiv. Visnyk Lvivskoho universytetu. Seriia khim. 2004, 44, 247-256. | |
dc.relation.referencesen | [1] Scott, M.A.; Kathleen, A.C.; Prabir, K.D. Handbook of Zeolite Science and Technology; Marcel Dekker Inc. USA, 2003. | |
dc.relation.referencesen | [2] Kulprathipanja, S. Zeolites in Industrial Separation and Cataly-sis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010. https://doi.org/10.1002/9783527629565 | |
dc.relation.referencesen | [3] Elboughdiri, N. The Use of Natural Zeolite to Remove Heavy Metals Cu (II), Pb (II) and Cd (II), from Industrial Wastewater. Cogent Eng. 2020, 7, 1782623. https://doi.org/10.1080/23311916.2020.1782623 | |
dc.relation.referencesen | [4] Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namiesnik, J. Study of the Selection Mechanism of Heavy Metal (Pb2+, Cu2+, Ni2+ and Cd2+) Adsorption on Clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21-28. https://doi.org/10.1016/j.jcis.2006.07.068 | |
dc.relation.referencesen | [5] Wingenfelder, U.; Hansen. C.; Furrer, G.; Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 2005, 39, 4606-4613. https://doi.org/10.1021/es048482s | |
dc.relation.referencesen | [6] AL-Oud, S.S.; Ghoneim, A.M.; Nadeem, M.A.; Al Harbi, S. Application Efficiency of Clinoptilolite Natural Zeolite for Pb2+ and Cu2+ Removal from Wastewater. Wulfenia 2015, 22, 317-332. | |
dc.relation.referencesen | [7] Bogdanov, B.; Georgiev, D.; Angelova, K.; Yaneva, K. Natural Zeolites: Clinoptilolite Review, International Science Conference, Stara Zagora (Bulgaria). International Science conference "Econom-ics and Society development on the Base of Knowledge", June 4-5, 2009; Natural & Mathematical Science: Stara Zagora (Bulgaria), 2009, 6-11. | |
dc.relation.referencesen | [8] Pavelic, S.K.; Medica, J.S.; Gumbarevic, D.; Filoševic, A.; Pržulj, N.; Pavelic, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications in vivo. Front. Pharmacol. 2018, 9, 1350. https://doi.org/10.3389/fphar.2018.01350 | |
dc.relation.referencesen | [9] Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Review. Molecules 2019, 24, 1517. https://doi.org/10.3390/ molecules24081517 | |
dc.relation.referencesen | [10] Pavelic, K.; Hadzija, M. Medical applications of zeolites. In Handbook of Zeolites Science and Technology; New York, NY: CRC Press, 2003; pp 1143-1173. | |
dc.relation.referencesen | [11] Application of Natural Zeolites in Medicine and Cosmetology – ZEOMEDCOS. Proceedings; SWB: Baku-London, 2010. | |
dc.relation.referencesen | [12] Kuntyi, O.; Zozulya, G.; Kytsya, A. "Green" Synthesis of Metallic Nanoparticles by Sonoelectrochemical and Sonogalvanic Replacement Methods. Bioinorg Chem Appl 2021, 2021, 9830644. https://doi.org/10.1155/2021/9830644 | |
dc.relation.referencesen | [13] Semenyuk, N.; Dudok, G.; Skorokhoda, T.; Sadova, U.; Sko-rokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone and their Application for Osteop-lastic Composites. Chem. Chem. Technol. 2022, 16, 404-410. https://doi.org/10.23939/chcht16.03.404 | |
dc.relation.referencesen | [14] Dudok, G.; Semenyuk, N.; Kysil, K.; Ilkiv, I.; Skorokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone. Proceedings of the 2021 IEEE 11th Interna-tional Conference "Nanomaterials: Applications and Properties", Odesa, Ukraine, September 05-11, 2021, NAP 2021, pp 1-4. https://doi.org/10.1109/NAP51885.2021.9568511 | |
dc.relation.referencesen | [15] Semenyuk, N.; Dudok, G.; Skorokhoda, T.; Suberlyak, O. Regularities of Obtaining and Properties of the Hydroxyapatite Filled Porous Composites Based on Polyvinylpyrrolidone. Easter-nEuropean J. Enterp. Technol. 2014, 5(6), 12-17. https://doi.org/10.15587/1729-4061.2014.27701 | |
dc.relation.referencesen | [16] Kuntyi, O.; Mazur, A.; Kytsya, A.; Karpenko, O.; Bazylyak, L.; Mertsalo, I.; Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802-807. https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.referencesen | [17] Zozulya; G.; Kuntyi; O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Re-placement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499. https://doi.org/10.23939/chcht15.04.493 | |
dc.relation.referencesen | [18] Shepida, M.; Kuntyi, O.; Sozanskyi, M.; Sukhatskiy, Y. Sonoelectrochemical Synthesis of Antibacterial Active Silver Nanoparticles in Rhamnolipid Slution. Adv. Mater. Sci. Eng. 2021, 2021, ID 7754523. https://doi.org/10.1155/2021/7754523 | |
dc.relation.referencesen | [19] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Kytsya, A.; Bazylyak, L. Synthesis of Silver Nanoparticles by Sonogalvanic Replacement on Aluminium Powder in Sodium Polyacrylate Solutions. Ultrason Sonochem 2022, 84, 105951. https://doi.org/10.1016/j.ultsonch.2022.105951 | |
dc.relation.referencesen | [20] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based on Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem. Chem. Technol. 2016, 10, 187-192. https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.referencesen | [21] Znak Z.O.; Kornii S.A.; Mashtaler A.S.; Zin O.I. Production of Nanoporous Zeolites Modified by Silver Ions with Antibacterial Properties. Mater Sci 2021, 56, 536-543. https://doi.org/10.1007/s11003-021-00461-1 | |
dc.relation.referencesen | [22] Znak, Z.; Zin, O.; Mashtaler, A.; Korniy, S.; Sukhatskiy, Yu.; Gogate, Parag R.; Mnykh, R.; Thanekar, P. Improved Modification of Clinoptilolite with Silver Using Ultrasonic Radiation. Ultrason Sonochem 2021, 73, 105496. https://doi.org/10.1016/j.ultsonch.2021.105496 | |
dc.relation.referencesen | [23] Yaholnyk S.H.; Kochubei V.V.; Trotskyi V.I. Vplyv popered-noi termichnoi obrobky na adsorbtsiinu zdatnist zakarpatskoho klynoptylolitu. Zhurnal ahrobiolohii ta ekolohii 2005, 2, 173-176. | |
dc.relation.referencesen | [24] Kochubei, V.V.; Yaholnyk, S.G.; Kniaz, S.V.; Parashchuk, L.Y.; Malovanyy, M.S. Research into the Influence of Activation Conditions of Transcarpathian Clinoptilolite on its Adsorption Capacity. Voprosy khimii i khimicheskoi tekhnologii 2020, 4, 80-87. https://doi.org/10.32434/0321-4095-2020-131-4-80-87 | |
dc.relation.referencesen | [25] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386-393. https://doi.org/10.23939/chcht14.03.386 | |
dc.relation.referencesen | [26] Zakordonskyi, V.; Vasylechko, V.; Stashchuk, P.; Hryshchuk, H. Termodesorbtsiia Vody y Fdsorbtsiini Vlastyvosti Zakarpatskykh Tseolitiv. Visnyk Lvivskoho universytetu. Seriia khim. 2004, 44, 247-256. | |
dc.relation.uri | https://doi.org/10.1002/9783527629565 | |
dc.relation.uri | https://doi.org/10.1080/23311916.2020.1782623 | |
dc.relation.uri | https://doi.org/10.1016/j.jcis.2006.07.068 | |
dc.relation.uri | https://doi.org/10.1021/es048482s | |
dc.relation.uri | https://doi.org/10.3389/fphar.2018.01350 | |
dc.relation.uri | https://doi.org/10.3390/ | |
dc.relation.uri | https://doi.org/10.1155/2021/9830644 | |
dc.relation.uri | https://doi.org/10.23939/chcht16.03.404 | |
dc.relation.uri | https://doi.org/10.1109/NAP51885.2021.9568511 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2014.27701 | |
dc.relation.uri | https://doi.org/10.1049/mnl.2020.0195 | |
dc.relation.uri | https://doi.org/10.23939/chcht15.04.493 | |
dc.relation.uri | https://doi.org/10.1155/2021/7754523 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2022.105951 | |
dc.relation.uri | https://doi.org/10.23939/chcht10.02.187 | |
dc.relation.uri | https://doi.org/10.1007/s11003-021-00461-1 | |
dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2021.105496 | |
dc.relation.uri | https://doi.org/10.32434/0321-4095-2020-131-4-80-87 | |
dc.relation.uri | https://doi.org/10.23939/chcht14.03.386 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Znak Z., Kochubei V., 2023 | |
dc.subject | природний клиноптилоліт | |
dc.subject | сорбційна ємність | |
dc.subject | модифікування | |
dc.subject | іони та частинки срібла | |
dc.subject | natural clinoptilolite | |
dc.subject | sorption capacity | |
dc.subject | modification | |
dc.subject | silver ions and particles | |
dc.title | Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity | |
dc.title.alternative | Вплив модифікування природного клиноптилоліту іонами та нуль-валентним сріблом на його сорбційну здатність | |
dc.type | Article |
Files
License bundle
1 - 1 of 1