Analytical relations for calculation the current of arg discharge in the metals’ vapors at the physical condi-tions of technological process of electron-beam deposition of ceramic coatings

dc.citation.epage132
dc.citation.issue2
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage123
dc.contributor.affiliationНаціональний технічний університет України “Київський політехнічний інститут імені Ігоря Сікорського”
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.authorМельник, І.
dc.contributor.authorТухай, С.
dc.contributor.authorСкрипка, М.
dc.contributor.authorСуржиков, М.
dc.contributor.authorШвед, І.
dc.contributor.authorMelnyk, I.
dc.contributor.authorTuhai, S.
dc.contributor.authorSkrypka, M.
dc.contributor.authorSurzhykov, M.
dc.contributor.authorShved, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-08-17T09:56:16Z
dc.date.available2023-08-17T09:56:16Z
dc.date.created2022-03-01
dc.date.issued2022-03-01
dc.description.abstractCтаття присвячена проблемі розрахунку величини струму несамостійого дугового розряду, який запалюється та підтримується в парах металу та активних газах для забезпечення хімічної реакції між ним у технологічному процесі напарювання тонких покриттів. Отримані співвідношення в основному базуються на рівнянні Пуассона для визначення розподілу електричного поля, рівнянні Менделєєва – Клапейрона для визначення концентрації іонів у насичених парах металів, а також на рівнянні неперервності струму в газовому розряді. Сформована система рівнянь розподілу електричного потенціалу та розрядного струму в просторових координатах перетворюється на кубічне рівняння, яке розв’язано аналітично. Наведено та проаналізовано отримані результати моделювання.
dc.description.abstractThe article is devoted to the problem of calculation the value of current of non-self-sustained arc discharge, which is lighting and maintained in the metal vapours and active gases for porviding the chemical reaction between its in the technological process of evaporation of thin coatings. Obtaineed relations are generally based on Poisson equation for defining the distribition of electric field, Mendeleev – Clapeyron equation for defining the concentration of ions in saturated metals’ vapours, as well as on equation of current continiouty in gas discharge. Formed set of equations for distribution of electric potential and discharge current in the spatial coordinates is transformed to cubic equation, which was solved analytically. Obtained simulation results are given and analyzed.
dc.format.extent123-132
dc.format.pages10
dc.identifier.citationAnalytical relations for calculation the current of arg discharge in the metals’ vapors at the physical condi-tions of technological process of electron-beam deposition of ceramic coatings / I. Melnyk, S. Tuhai, M. Skrypka, M. Surzhykov, I. Shved // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 2. — No 2. — P. 123–132.
dc.identifier.citationenAnalytical relations for calculation the current of arg discharge in the metals’ vapors at the physical condi-tions of technological process of electron-beam deposition of ceramic coatings / I. Melnyk, S. Tuhai, M. Skrypka, M. Surzhykov, I. Shved // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 2. — No 2. — P. 123–132.
dc.identifier.doidoi.org/10.23939/ictee2022.02.123
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59684
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 2 (2), 2022
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 2 (2), 2022
dc.relation.references[1] Zakharov A., Rozenko S., Litvintsev S. and Ilchenko M. 2020. Trisection Bandpass Filter with Mixed CrossCoupling and Different Paths for Signal Propagation, IEEE Microw. Wirel. Compon. Lett. Vol. 30. No. 1. Pp. 12–15, Jan.
dc.relation.references[2] Zakharov A., Litvintsev S. and Ilchenko M. (2019). Trisection Bandpass Filters with All Mixed Couplings. IEEE Microwave Wireless Components Letter. Vol. 29. No. 9. Pp. 592–594.
dc.relation.references[3] Zakharov A., Rozenko S. and Ilchenko M. (2019). Varactor-tuned microstrip bandpass filter with loop hairpin and combline resonators. IEEE Transactions on Circuits Systems. II. Experimental Briefs. Vol. 66. No. 6. Pp. 953–957.
dc.relation.references[4] Zakharov A., Litvintsev S. and Ilchenko M. (2020). Transmission Line Tunable Resonators with Intersecting Resonance Regions. Transactions on Circuits Systems. II. Experimental Briefs. Vol. 67. no. 4. Pp. 660–664.
dc.relation.references[5] Grechanyuk M. I., Melnyk A. G., Grechanyuk I. M. et al. (2014). Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials. Electrotechnics and Electronics (E+E). Vol. 49. No. 5–6. Pp. 115–121.
dc.relation.references[6] Mattausch G., Zimmermann B., Fietzke F., Heinss J. P., Graffel B., Winkler F., Roegner F. H., Metzner C. (2014). Gas discharge electron sources – proven and novel tools for thin-film technologies. Electrotechnics and Electronics. Vol. 49. No. 5–6 Pp. 183–195.
dc.relation.references[7] Feinaeugle P., Mattausch G., Schmidt S., Roegner F. H. (2011). “A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD”, Society of Vacuum Coaters, 54-th Annual Technical Conference Proceedings, Chicago. Pp. 202–209.
dc.relation.references[8] Denbnovetskiy S., Melnyk V., Melnyk I., Tugai B., Tuhai S., Wojcik W., Lawicki T., Assambay A., Luganskaya S. (2017). Principles of operation of high voltage glow discharge electron guns and particularities of its technological application. Proceedings of SPIE, The International Society of Optical Engineering. Pp. 10445–10455.
dc.relation.references[9] Denbnovetsky S. V., Melnyk V. I., Melnyk I. V., Tugay B. A. (2003). Model of control of glow discharge electron gun current for microelectronics production applications. Proceedings of SPIE. Sixth International Conference on Material Science and Material Properties for Infrared Optoelectronics. Vol. 5065. Pp. 64–76.
dc.relation.references[10] Schiller S., Heisig U., Panzer S. (1982). Electron Beam Technology. John Wiley & Sons Inc. 508 p.
dc.relation.references[11] Melnyk I., Tyhai S. and Pochynok A. (2021). Universal complex model for estimation the beam current density of high voltage glow discharge electron guns. Lecture Notes in Networks and Systems: manual book, 152. Edited by Ilchenko M.Yu. Springer. P. 319–341.
dc.relation.references[12] Melnyk I. V. (2005). Numerical simulation of distribution of electric field and particle trajectories in electron sources based on high-voltage glow discharge. Radioelectronics and Communications Systems, Vol. 48. No. 6. P. 41–48.
dc.relation.references[13] Raizer Yu. P. (1991). Gas Discharge Physics. New York, Springer, 449 p.
dc.relation.references[14] Smirnov B. M. (2015). Theory of Gas Discharge Plasma. New York, Springer. 433 p.
dc.relation.references[15] Schwartz M. (2003). Principles of Electrodynamics. New-York: Dover Publications Inc. 368 p.
dc.relation.references[16] Lawson J. D. (1988). The Physics of Charged-Particle Beams. 2nd Edition. Oxford University Press. 472 p.
dc.relation.references[17] Szilagyi M. (2012). Electron and Ion Optics. Springer Science & Business Media. 608 p.
dc.relation.references[18] Zucker R. D., Biblarz O. (2019). Fundamentals of Gas Dynamics. 3rd Edition. John Wiley and Sons, 560 p.
dc.relation.references[19] Campbell P., Ellington A., Haver W., Inge V. (2013). The Elementary Mathematics Specialists Handbook. National Council of Teachers of Mathematics, 264 p.
dc.relation.references[20] Mathews J. H., Fink K. D. (1998). “Numerical Methods. Using MATLAB. Third Edition”, Print Hall, Amazon, 336 p.
dc.relation.references[21] Kuchling H. (2014) Taschenbuch der Physik. 21 Edition. Hanser Verlag (in German).
dc.relation.references[22] Espe W. (1966). Materials of High Vacuum Technology. Pergamon Press.
dc.relation.referencesen[1] Zakharov A., Rozenko S., Litvintsev S. and Ilchenko M. 2020. Trisection Bandpass Filter with Mixed CrossCoupling and Different Paths for Signal Propagation, IEEE Microw. Wirel. Compon. Lett. Vol. 30. No. 1. Pp. 12–15, Jan.
dc.relation.referencesen[2] Zakharov A., Litvintsev S. and Ilchenko M. (2019). Trisection Bandpass Filters with All Mixed Couplings. IEEE Microwave Wireless Components Letter. Vol. 29. No. 9. Pp. 592–594.
dc.relation.referencesen[3] Zakharov A., Rozenko S. and Ilchenko M. (2019). Varactor-tuned microstrip bandpass filter with loop hairpin and combline resonators. IEEE Transactions on Circuits Systems. II. Experimental Briefs. Vol. 66. No. 6. Pp. 953–957.
dc.relation.referencesen[4] Zakharov A., Litvintsev S. and Ilchenko M. (2020). Transmission Line Tunable Resonators with Intersecting Resonance Regions. Transactions on Circuits Systems. II. Experimental Briefs. Vol. 67. no. 4. Pp. 660–664.
dc.relation.referencesen[5] Grechanyuk M. I., Melnyk A. G., Grechanyuk I. M. et al. (2014). Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials. Electrotechnics and Electronics (E+E). Vol. 49. No. 5–6. Pp. 115–121.
dc.relation.referencesen[6] Mattausch G., Zimmermann B., Fietzke F., Heinss J. P., Graffel B., Winkler F., Roegner F. H., Metzner C. (2014). Gas discharge electron sources – proven and novel tools for thin-film technologies. Electrotechnics and Electronics. Vol. 49. No. 5–6 Pp. 183–195.
dc.relation.referencesen[7] Feinaeugle P., Mattausch G., Schmidt S., Roegner F. H. (2011). "A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD", Society of Vacuum Coaters, 54-th Annual Technical Conference Proceedings, Chicago. Pp. 202–209.
dc.relation.referencesen[8] Denbnovetskiy S., Melnyk V., Melnyk I., Tugai B., Tuhai S., Wojcik W., Lawicki T., Assambay A., Luganskaya S. (2017). Principles of operation of high voltage glow discharge electron guns and particularities of its technological application. Proceedings of SPIE, The International Society of Optical Engineering. Pp. 10445–10455.
dc.relation.referencesen[9] Denbnovetsky S. V., Melnyk V. I., Melnyk I. V., Tugay B. A. (2003). Model of control of glow discharge electron gun current for microelectronics production applications. Proceedings of SPIE. Sixth International Conference on Material Science and Material Properties for Infrared Optoelectronics. Vol. 5065. Pp. 64–76.
dc.relation.referencesen[10] Schiller S., Heisig U., Panzer S. (1982). Electron Beam Technology. John Wiley & Sons Inc. 508 p.
dc.relation.referencesen[11] Melnyk I., Tyhai S. and Pochynok A. (2021). Universal complex model for estimation the beam current density of high voltage glow discharge electron guns. Lecture Notes in Networks and Systems: manual book, 152. Edited by Ilchenko M.Yu. Springer. P. 319–341.
dc.relation.referencesen[12] Melnyk I. V. (2005). Numerical simulation of distribution of electric field and particle trajectories in electron sources based on high-voltage glow discharge. Radioelectronics and Communications Systems, Vol. 48. No. 6. P. 41–48.
dc.relation.referencesen[13] Raizer Yu. P. (1991). Gas Discharge Physics. New York, Springer, 449 p.
dc.relation.referencesen[14] Smirnov B. M. (2015). Theory of Gas Discharge Plasma. New York, Springer. 433 p.
dc.relation.referencesen[15] Schwartz M. (2003). Principles of Electrodynamics. New-York: Dover Publications Inc. 368 p.
dc.relation.referencesen[16] Lawson J. D. (1988). The Physics of Charged-Particle Beams. 2nd Edition. Oxford University Press. 472 p.
dc.relation.referencesen[17] Szilagyi M. (2012). Electron and Ion Optics. Springer Science & Business Media. 608 p.
dc.relation.referencesen[18] Zucker R. D., Biblarz O. (2019). Fundamentals of Gas Dynamics. 3rd Edition. John Wiley and Sons, 560 p.
dc.relation.referencesen[19] Campbell P., Ellington A., Haver W., Inge V. (2013). The Elementary Mathematics Specialists Handbook. National Council of Teachers of Mathematics, 264 p.
dc.relation.referencesen[20] Mathews J. H., Fink K. D. (1998). "Numerical Methods. Using MATLAB. Third Edition", Print Hall, Amazon, 336 p.
dc.relation.referencesen[21] Kuchling H. (2014) Taschenbuch der Physik. 21 Edition. Hanser Verlag (in German).
dc.relation.referencesen[22] Espe W. (1966). Materials of High Vacuum Technology. Pergamon Press.
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectелектронно-променеве випаровування
dc.subjectкерамічні покриття
dc.subjectдуговий розряд
dc.subjectрозподіл електричного поля
dc.subjectконцентрація іонів
dc.subjectнасичені пари
dc.subjectкубічне рівняння
dc.subjectelectron beam evaporation
dc.subjectceramic coatings arc discharge
dc.subjectelectric field distribution
dc.subjections concentration
dc.subjectsaturated vapors
dc.subjectcubic equation
dc.subject.udc621.791
dc.subject.udc537.525
dc.titleAnalytical relations for calculation the current of arg discharge in the metals’ vapors at the physical condi-tions of technological process of electron-beam deposition of ceramic coatings
dc.title.alternativeАналітичні співвідношення для розрахунку струму розряду АРГ у парах металів за фізичних умов технологічного процесу електронно-променевого осадження керамічних покриттів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v2n2_Melnyk_I-Analytical_relations_for_123-132.pdf
Size:
823.9 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v2n2_Melnyk_I-Analytical_relations_for_123-132__COVER.png
Size:
1.2 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: