Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons
dc.citation.epage | 385 | |
dc.citation.issue | 2 | |
dc.citation.spage | 373 | |
dc.contributor.affiliation | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine | |
dc.contributor.author | Voloshyna, Yuliya | |
dc.contributor.author | Pertko, Olexandra | |
dc.contributor.author | Povazhnyi, Volodymyr | |
dc.contributor.author | Patrylak, Lyubov | |
dc.contributor.author | Yakovenko, Angela | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:34Z | |
dc.date.available | 2024-02-12T08:30:34Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | На основі даних рентгенівської дифрактометрії, ІЧ-спектроскопії, низькотемпературної адсорбції N2 та тестування в мікроімпульсному каталітичному перетворенні C6-вуглеводнів було оцінено ефективність модифікування українських клиноптилолітвмісних порід, здійсненого з метою покращення їхніх адсорбційних і каталітичних властивостей. Встановлено вплив такого модифікування на розподіл продуктів реакції. | |
dc.description.abstract | The efficiency of modifying the Ukrainian clinoptilolite-containing rocks to improve their adsorption and catalytic properties was evaluated based on the data of XRD, IR spectroscopy, low-temperature N2 adsorption, and testing in the micropulse catalytic transformation of C6-hydrocarbons. The effect of such modification on the distribution of reaction products was established. | |
dc.format.extent | 373-385 | |
dc.format.pages | 13 | |
dc.identifier.citation | Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons / Yuliya Voloshyna, Olexandra Pertko, Volodymyr Povazhnyi, Lyubov Patrylak, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 373–385. | |
dc.identifier.citationen | Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons / Yuliya Voloshyna, Olexandra Pertko, Volodymyr Povazhnyi, Lyubov Patrylak, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 373–385. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.373 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61241 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538–542. https://doi.org/10.23939/chcht12.04.538 | |
dc.relation.references | [2] Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212–220. https://doi.org/10.1007/s11237-016-9470-x | |
dc.relation.references | [3] Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195–2212. https://doi.org/10.1039/C7QM00168A | |
dc.relation.references | [4] Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539–8546. https://doi.org/10.1002/slct.201801971 | |
dc.relation.references | [5] Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601–611. https://doi.org/10.1016/j.trechm.2019.05.010 | |
dc.relation.references | [6] Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127–150. https://doi.org/10.3390/catal9020127 | |
dc.relation.references | [7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119–126. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.references | [8] Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473–485. https://doi.org/10.1007/s11144-010-0273-0 | |
dc.relation.references | [9] Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3–16. https://doi.org/10.1016/S0920-5861(03)00097-X | |
dc.relation.references | [10] Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10–15. | |
dc.relation.references | [11] Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387–394. | |
dc.relation.references | [12] Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364–368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1 | |
dc.relation.references | [13] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411–425. https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.references | [14] Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022). | |
dc.relation.references | [15] Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147–158. https://doi.org/10.1016/0926-860X(95)00216-2 | |
dc.relation.references | [16] Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50–58. https://doi.org/10.1016/j.cattod.2015.04.039 | |
dc.relation.references | [17] Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266 | |
dc.relation.references | [18] Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121–129. https://doi.org/10.1180/clm.2019.18 | |
dc.relation.references | [19] Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO–ZnO–Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767–777. https://doi.org/10.1016/j.materresbull.2012.11.057 | |
dc.relation.references | [20] Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261–266. https://doi.org/10.1016/j.apcata.2005.04.002 | |
dc.relation.references | [21] Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49–71. https://doi.org/10.1016/0254-0584(87)90048-4 | |
dc.relation.references | [22] Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25–37. https://doi.org/10.1515/REVAC.2010.29.1.25 | |
dc.relation.references | [23] Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15). | |
dc.relation.references | [24] Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606–611. https://doi.org/10.1515/geo-2016-0055 | |
dc.relation.references | [25] Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329–332. https://doi.org/10.1016/0144-2449(83)90177-X | |
dc.relation.references | [26] Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369–372. https://doi.org/10.1016/0144-2449(84)90013-7 | |
dc.relation.references | [27] Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59–66. https://doi.org/10.20535/2218-930022021241332 | |
dc.relation.references | [28] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117 | |
dc.relation.references | [29] Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443–454. https://doi.org/10.1023/A:1009662408173 | |
dc.relation.references | [30] Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148–157. https://doi.org/10.1016/j.apcata.2014.02.026 | |
dc.relation.references | [31] Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. C 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x | |
dc.relation.references | [32] Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032 | |
dc.relation.referencesen | [1] Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538–542. https://doi.org/10.23939/chcht12.04.538 | |
dc.relation.referencesen | [2] Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212–220. https://doi.org/10.1007/s11237-016-9470-x | |
dc.relation.referencesen | [3] Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195–2212. https://doi.org/10.1039/P.7QM00168A | |
dc.relation.referencesen | [4] Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539–8546. https://doi.org/10.1002/slct.201801971 | |
dc.relation.referencesen | [5] Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601–611. https://doi.org/10.1016/j.trechm.2019.05.010 | |
dc.relation.referencesen | [6] Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127–150. https://doi.org/10.3390/catal9020127 | |
dc.relation.referencesen | [7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119–126. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.referencesen | [8] Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473–485. https://doi.org/10.1007/s11144-010-0273-0 | |
dc.relation.referencesen | [9] Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3–16. https://doi.org/10.1016/S0920-5861(03)00097-X | |
dc.relation.referencesen | [10] Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10–15. | |
dc.relation.referencesen | [11] Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387–394. | |
dc.relation.referencesen | [12] Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364–368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1 | |
dc.relation.referencesen | [13] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411–425. https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.referencesen | [14] Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022). | |
dc.relation.referencesen | [15] Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147–158. https://doi.org/10.1016/0926-860X(95)00216-2 | |
dc.relation.referencesen | [16] Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50–58. https://doi.org/10.1016/j.cattod.2015.04.039 | |
dc.relation.referencesen | [17] Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266 | |
dc.relation.referencesen | [18] Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121–129. https://doi.org/10.1180/clm.2019.18 | |
dc.relation.referencesen | [19] Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO–ZnO–Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767–777. https://doi.org/10.1016/j.materresbull.2012.11.057 | |
dc.relation.referencesen | [20] Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261–266. https://doi.org/10.1016/j.apcata.2005.04.002 | |
dc.relation.referencesen | [21] Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49–71. https://doi.org/10.1016/0254-0584(87)90048-4 | |
dc.relation.referencesen | [22] Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25–37. https://doi.org/10.1515/REVAC.2010.29.1.25 | |
dc.relation.referencesen | [23] Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15). | |
dc.relation.referencesen | [24] Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606–611. https://doi.org/10.1515/geo-2016-0055 | |
dc.relation.referencesen | [25] Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329–332. https://doi.org/10.1016/0144-2449(83)90177-X | |
dc.relation.referencesen | [26] Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369–372. https://doi.org/10.1016/0144-2449(84)90013-7 | |
dc.relation.referencesen | [27] Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59–66. https://doi.org/10.20535/2218-930022021241332 | |
dc.relation.referencesen | [28] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117 | |
dc.relation.referencesen | [29] Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443–454. https://doi.org/10.1023/A:1009662408173 | |
dc.relation.referencesen | [30] Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148–157. https://doi.org/10.1016/j.apcata.2014.02.026 | |
dc.relation.referencesen | [31] Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. P. 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x | |
dc.relation.referencesen | [32] Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032 | |
dc.relation.uri | https://doi.org/10.23939/chcht12.04.538 | |
dc.relation.uri | https://doi.org/10.1007/s11237-016-9470-x | |
dc.relation.uri | https://doi.org/10.1039/C7QM00168A | |
dc.relation.uri | https://doi.org/10.1002/slct.201801971 | |
dc.relation.uri | https://doi.org/10.1016/j.trechm.2019.05.010 | |
dc.relation.uri | https://doi.org/10.3390/catal9020127 | |
dc.relation.uri | https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.uri | https://doi.org/10.1007/s11144-010-0273-0 | |
dc.relation.uri | https://doi.org/10.1016/S0920-5861(03)00097-X | |
dc.relation.uri | https://doi.org/10.1023/B:THEC.0000013989.04033.e1 | |
dc.relation.uri | https://doi.org/10.1007/s13204-021-01682-1 | |
dc.relation.uri | https://doi.org/10.1007/s13204-022-02632-1 | |
dc.relation.uri | https://www.springer.com/journal/13204 | |
dc.relation.uri | https://doi.org/10.1016/0926-860X(95)00216-2 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2015.04.039 | |
dc.relation.uri | https://doi.org/10.1016/j.micromeso.2021.111266 | |
dc.relation.uri | https://doi.org/10.1180/clm.2019.18 | |
dc.relation.uri | https://doi.org/10.1016/j.materresbull.2012.11.057 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2005.04.002 | |
dc.relation.uri | https://doi.org/10.1016/0254-0584(87)90048-4 | |
dc.relation.uri | https://doi.org/10.1515/REVAC.2010.29.1.25 | |
dc.relation.uri | http://www.iza-structure.org/databases/ | |
dc.relation.uri | https://doi.org/10.1515/geo-2016-0055 | |
dc.relation.uri | https://doi.org/10.1016/0144-2449(83)90177-X | |
dc.relation.uri | https://doi.org/10.1016/0144-2449(84)90013-7 | |
dc.relation.uri | https://doi.org/10.20535/2218-930022021241332 | |
dc.relation.uri | https://doi.org/10.1515/pac-2014-1117 | |
dc.relation.uri | https://doi.org/10.1023/A:1009662408173 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2014.02.026 | |
dc.relation.uri | https://doi.org/10.1021/jp106474x | |
dc.relation.uri | https://doi.org/10.1021/j100141a032 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Voloshyna Yu., Pertko O., Povazhnyi V., Patrylak L., Yakovenko A., 2023 | |
dc.subject | цеолітвмісна порода | |
dc.subject | біфункціональний каталізатор | |
dc.subject | модифікування | |
dc.subject | C6-вуглеводні | |
dc.subject | крекінг | |
dc.subject | гідроізомеризація | |
dc.subject | zeolite-containing rock | |
dc.subject | bifunctional catalyst | |
dc.subject | modification | |
dc.subject | C6-hydrocarbons | |
dc.subject | cracking | |
dc.subject | hydroisomerization | |
dc.title | Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons | |
dc.title.alternative | Вплив модифікування клиноптилолітвмісних порід Закарпаття на їхні пористі характеристики і каталітичні властивості в перетворенні C6-вуглеводнів | |
dc.type | Article |
Files
License bundle
1 - 1 of 1