Effect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons

dc.citation.epage385
dc.citation.issue2
dc.citation.spage373
dc.contributor.affiliationV. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
dc.contributor.authorVoloshyna, Yuliya
dc.contributor.authorPertko, Olexandra
dc.contributor.authorPovazhnyi, Volodymyr
dc.contributor.authorPatrylak, Lyubov
dc.contributor.authorYakovenko, Angela
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:34Z
dc.date.available2024-02-12T08:30:34Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractНа основі даних рентгенівської дифрактометрії, ІЧ-спектроскопії, низькотемпературної адсорбції N2 та тестування в мікроімпульсному каталітичному перетворенні C6-вуглеводнів було оцінено ефективність модифікування українських клиноптилолітвмісних порід, здійсненого з метою покращення їхніх адсорбційних і каталітичних властивостей. Встановлено вплив такого модифікування на розподіл продуктів реакції.
dc.description.abstractThe efficiency of modifying the Ukrainian clinoptilolite-containing rocks to improve their adsorption and catalytic properties was evaluated based on the data of XRD, IR spectroscopy, low-temperature N2 adsorption, and testing in the micropulse catalytic transformation of C6-hydrocarbons. The effect of such modification on the distribution of reaction products was established.
dc.format.extent373-385
dc.format.pages13
dc.identifier.citationEffect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons / Yuliya Voloshyna, Olexandra Pertko, Volodymyr Povazhnyi, Lyubov Patrylak, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 373–385.
dc.identifier.citationenEffect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons / Yuliya Voloshyna, Olexandra Pertko, Volodymyr Povazhnyi, Lyubov Patrylak, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 373–385.
dc.identifier.doidoi.org/10.23939/chcht17.02.373
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61241
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538–542. https://doi.org/10.23939/chcht12.04.538
dc.relation.references[2] Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212–220. https://doi.org/10.1007/s11237-016-9470-x
dc.relation.references[3] Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195–2212. https://doi.org/10.1039/C7QM00168A
dc.relation.references[4] Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539–8546. https://doi.org/10.1002/slct.201801971
dc.relation.references[5] Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601–611. https://doi.org/10.1016/j.trechm.2019.05.010
dc.relation.references[6] Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127–150. https://doi.org/10.3390/catal9020127
dc.relation.references[7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119–126. https://doi.org/10.4236/mrc.2013.24017
dc.relation.references[8] Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473–485. https://doi.org/10.1007/s11144-010-0273-0
dc.relation.references[9] Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3–16. https://doi.org/10.1016/S0920-5861(03)00097-X
dc.relation.references[10] Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10–15.
dc.relation.references[11] Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387–394.
dc.relation.references[12] Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364–368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1
dc.relation.references[13] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411–425. https://doi.org/10.1007/s13204-021-01682-1
dc.relation.references[14] Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022).
dc.relation.references[15] Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147–158. https://doi.org/10.1016/0926-860X(95)00216-2
dc.relation.references[16] Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50–58. https://doi.org/10.1016/j.cattod.2015.04.039
dc.relation.references[17] Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266
dc.relation.references[18] Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121–129. https://doi.org/10.1180/clm.2019.18
dc.relation.references[19] Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO–ZnO–Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767–777. https://doi.org/10.1016/j.materresbull.2012.11.057
dc.relation.references[20] Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261–266. https://doi.org/10.1016/j.apcata.2005.04.002
dc.relation.references[21] Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49–71. https://doi.org/10.1016/0254-0584(87)90048-4
dc.relation.references[22] Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25–37. https://doi.org/10.1515/REVAC.2010.29.1.25
dc.relation.references[23] Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15).
dc.relation.references[24] Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606–611. https://doi.org/10.1515/geo-2016-0055
dc.relation.references[25] Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329–332. https://doi.org/10.1016/0144-2449(83)90177-X
dc.relation.references[26] Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369–372. https://doi.org/10.1016/0144-2449(84)90013-7
dc.relation.references[27] Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59–66. https://doi.org/10.20535/2218-930022021241332
dc.relation.references[28] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
dc.relation.references[29] Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443–454. https://doi.org/10.1023/A:1009662408173
dc.relation.references[30] Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148–157. https://doi.org/10.1016/j.apcata.2014.02.026
dc.relation.references[31] Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. C 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x
dc.relation.references[32] Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032
dc.relation.referencesen[1] Patrylak, L.; Pertko, O. Peculiarities of Activity Renovation of Zeolite Catalysts Coked in Hexane Cracking. Chem. Chem. Technol. 2018, 12, 538–542. https://doi.org/10.23939/chcht12.04.538
dc.relation.referencesen[2] Barakov, R.Y.; Shcherban, N.D.; Yaremov, P.S.; Voloshyna, Y.G.; Krylova, M.M.; Tsyrina, V.V.; Ilyin, V.G. Effect of the Structure and Acidity of Micro-Mesoporous Alumosilicates on Their Catalytic Activity in Cumene Cracking. Theor. Exp. Chem. 2016, 52, 212–220. https://doi.org/10.1007/s11237-016-9470-x
dc.relation.referencesen[3] Liu, Z.; Hua, Y.; Wang, J.; Dong, X.; Tian, Q.; Han, Y. Recent Progress in the Direct Synthesis of Hierarchical Zeolites: Synthetic Strategies and Characterization Methods. Mater. Chem. Front. 2017, 1, 2195–2212. https://doi.org/10.1039/P.7QM00168A
dc.relation.referencesen[4] Kurmach, M.M.; Larina, O.V.; Kyriienko, P.I.; Yaremov, P.S.; Trachevsky, V.V.; Shvets, O.V.; Soloviev, S.O. Hierarchical Zr-MTW Zeolites Doped with Copper as Catalysts of Ethanol Conversion into 1,3-Butadiene. ChemistrySelect. 2018, 3, 8539–8546. https://doi.org/10.1002/slct.201801971
dc.relation.referencesen[5] Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts. Trends in Chemistry 2019, 1, 601–611. https://doi.org/10.1016/j.trechm.2019.05.010
dc.relation.referencesen[6] Khan, W.; Jia, X.; Wu, Zh.; Choi, J.; Yip, A.C.K. Incorporat-ing Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts 2019, 9, 127–150. https://doi.org/10.3390/catal9020127
dc.relation.referencesen[7] Martins, G.S.V.; dos Santos, E.R.F.; Rodrigues, M.G.F.; Pecchi, G.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Ni-Pt/Catalysts Supported on Mordenite. Modern Research in Catalysis 2013, 2, 119–126. https://doi.org/10.4236/mrc.2013.24017
dc.relation.referencesen[8] Sousa, B.V.; Brito, K.D.; Alves, J.J.N.; Rodrigues, M.G.F.; Yoshioka, C.M.N.; Cardoso, D. N-Hexane Isomerization on Pt/HMOR: Effect of Platinum Content. Reac. Kinet. Mech. Cat. 2011, 102, 473–485. https://doi.org/10.1007/s11144-010-0273-0
dc.relation.referencesen[9] Ono, Y. A Survey of the Mechanism in Catalytic Isomeriza-tion of Alkanes. Catal. Today 2003, 81, 3–16. https://doi.org/10.1016/S0920-5861(03)00097-X
dc.relation.referencesen[10] Patriljak, K.I.; Bobonich, F.M.; Patriljak, L.K.; Voloshina, Yu.G.; Levchuk, N.N.; Solomaha, V.N.; Cuprik, I.N. Gidroizomerizacija N-Geksana na Palladij- i Cirkonilsoderzhashhih Modificirovannyh Mordenit-Klinoptilolitovyh Porodah. Katalìz ta naftohìmìâ 2000, 4, 10–15.
dc.relation.referencesen[11] Patrylak, K.I.; Bobonich, F.M.; Tsupryk, I.N.; Bobik, V.V.; Levchuk, N.N.; Solomakha, V.N. The Role of External Acid Sites of Palladium-Containing Zeolite Catalysts in Hexane Isomerization. Pet. Chem. 2003, 43, 387–394.
dc.relation.referencesen[12] Bobik, V.V.; Bobonich, F.M.; Belokopytov, Yu.V. Effect of External Acidity of Mordenite-Supported Catalysts on the 2,2-Dimethylbutane Content in Hydroisomerization Products of N-Hexane. Theor. Exp. Chem. 2003, 39, 364–368. https://doi.org/10.1023/B:THEC.0000013989.04033.e1
dc.relation.referencesen[13] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411–425. https://doi.org/10.1007/s13204-021-01682-1
dc.relation.referencesen[14] Voloshyna, Yu.G.; Pertko, O.P.; Povazhnyi, V.A.; Patrylak, L.K.; Yakovenko, A.V. Influence of the Development of a System of Nanoscale Pores in a Mordenite-Containing Rock on Its Selectivity for Di-Branched Products of n-Hexane Hydroisomerization. Appl. Nanosci. [Online early access]. https://doi.org/10.1007/s13204-022-02632-1 Published online: September 13, 2022. https://www.springer.com/journal/13204 (accessed Oct 15, 2022).
dc.relation.referencesen[15] Woo, H.C.; Lee, K.H.; Lee, J.S. Catalytic Skeletal Isomeriza-tion of N-Butenes to Isobutene over Natural Clinoptilolite Zeolite. Appl. Catal. A-Gen. 1996, 134, 147–158. https://doi.org/10.1016/0926-860X(95)00216-2
dc.relation.referencesen[16] Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and Physicochemical Properties of Modified Natural Clinoptilolite. Catal. Today 2016, 259, 50–58. https://doi.org/10.1016/j.cattod.2015.04.039
dc.relation.referencesen[17] Miądlicki, P.; Wróblewska, A.; Kiełbasa, K.; Koren, Z.C.; Michalkiewicz, B. Sulfuric Acid Modified Clinoptilolite as a Solid Green Catalyst for Solvent-Free α-Pinene Isomerization Process. Microporous Mesoporous Mater. 2021, 324, 111266. https://doi.org/10.1016/j.micromeso.2021.111266
dc.relation.referencesen[18] Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkie-wicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Minerals 2019, 54, 121–129. https://doi.org/10.1180/clm.2019.18
dc.relation.referencesen[19] Khoshbin, R.; Haghighi, M.; Asgari, N. Direct Synthesis of Dimethyl Ether on the Admixed Nanocatalysts of CuO–ZnO–Al2O3 and HNO3-Modified Clinoptilolite at High Pressures: Surface Properties and Catalytic Performance. Mater. Res. Bull. 2013, 48, 767–777. https://doi.org/10.1016/j.materresbull.2012.11.057
dc.relation.referencesen[20] Yilmaz, S.; Ucar, S.; Artok, L.; Gulec, H. The Kinetics of Citral Hydrogenation over Pd Supported on Clinoptilolite Rich Natural Zeolite. Appl. Catal. A-Gen. 2005, 287, 261–266. https://doi.org/10.1016/j.apcata.2005.04.002
dc.relation.referencesen[21] Barthomeuf, D. Zeolite Acidity Dependence on Structure and Chemical Environment. Correlations with Catalysis. Mater. Chem. Phys. 1987, 17, 49–71. https://doi.org/10.1016/0254-0584(87)90048-4
dc.relation.referencesen[22] Tur'yan, Y.I. Theoretical Bases of the Ammonium Ion Deter-mination by Formol Titration. Rev. Anal. Chem. 2010, 29, 25–37. https://doi.org/10.1515/REVAC.2010.29.1.25
dc.relation.referencesen[23] Database of Zeolite Structures Home Page. http://www.iza-structure.org/databases/ (accessed 2022-10-15).
dc.relation.referencesen[24] Zuo, R.-F.; Du, G.-X.; Yang, W.-G.; Liao, L.-B.; Li, Z. Mineralogical and Chemical Characteristics of a Powder and Purified Quartz from Yunnan Province. Open Geosci. 2016, 8, 606–611. https://doi.org/10.1515/geo-2016-0055
dc.relation.referencesen[25] Pechar, F.; Rykl, D. Study of the Complex Vibrational Spectra of Natural Zeolite Mordenites. Zeolites 1983, 3, 329–332. https://doi.org/10.1016/0144-2449(83)90177-X
dc.relation.referencesen[26] Jansen, J.C.; van der Gaag, F.J.; van Bekkum, H. Identifica-tion of ZSM-type and Other 5-Ring Containing Zeolites by I.R. Spectroscopy. Zeolites 1984, 4, 369–372. https://doi.org/10.1016/0144-2449(84)90013-7
dc.relation.referencesen[27] Patrylak, L.K.; Voloshyna, Yu.G.; Pertko, O.P.; Yakovenko, A.V.; Povazhnyi, V.A.; Melnychuk, O.V. Investigation of the Features of Nickel-Modified Mordenite Zeolites. Water&Water Purification Technologies. Scientific and Technical News 2021, 30, 59–66. https://doi.org/10.20535/2218-930022021241332
dc.relation.referencesen[28] Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
dc.relation.referencesen[29] Hernández, M.; Rojas, F.; Lara, V. Nitrogen-Sorption Characterization of the Microporous Structure of Clinoptilolite-Type Zeolites. J. Porous Mater. 2000, 7, 443–454. https://doi.org/10.1023/A:1009662408173
dc.relation.referencesen[30] Monteiro, R.; Ani, C.O.; Rocha, J.; Carvalho, A.P.; Martins, A. Catalytic Behavior of Alkali-Treated Pt/HMOR in N-Hexane Hydroisomerization. Appl. Catal. A-Gen. 2014, 476, 148–157. https://doi.org/10.1016/j.apcata.2014.02.026
dc.relation.referencesen[31] Gobin, O.C.; Reitmeier, S.J.; Jentys, A.; Lercher, J.A. Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. J. Phys. Chem. P. 2011, 115, 1171−1179. https://doi.org/10.1021/jp106474x
dc.relation.referencesen[32] Barthomeuf, D. Topology and Maximum Content of Isolated Species (Al, Ga, Fe, B, Si, ...) in a Zeolitic Framework. An Ap-proach to Acid Catalysis. J. Phys. Chem. 1993, 97, 10092−10096. https://doi.org/10.1021/j100141a032
dc.relation.urihttps://doi.org/10.23939/chcht12.04.538
dc.relation.urihttps://doi.org/10.1007/s11237-016-9470-x
dc.relation.urihttps://doi.org/10.1039/C7QM00168A
dc.relation.urihttps://doi.org/10.1002/slct.201801971
dc.relation.urihttps://doi.org/10.1016/j.trechm.2019.05.010
dc.relation.urihttps://doi.org/10.3390/catal9020127
dc.relation.urihttps://doi.org/10.4236/mrc.2013.24017
dc.relation.urihttps://doi.org/10.1007/s11144-010-0273-0
dc.relation.urihttps://doi.org/10.1016/S0920-5861(03)00097-X
dc.relation.urihttps://doi.org/10.1023/B:THEC.0000013989.04033.e1
dc.relation.urihttps://doi.org/10.1007/s13204-021-01682-1
dc.relation.urihttps://doi.org/10.1007/s13204-022-02632-1
dc.relation.urihttps://www.springer.com/journal/13204
dc.relation.urihttps://doi.org/10.1016/0926-860X(95)00216-2
dc.relation.urihttps://doi.org/10.1016/j.cattod.2015.04.039
dc.relation.urihttps://doi.org/10.1016/j.micromeso.2021.111266
dc.relation.urihttps://doi.org/10.1180/clm.2019.18
dc.relation.urihttps://doi.org/10.1016/j.materresbull.2012.11.057
dc.relation.urihttps://doi.org/10.1016/j.apcata.2005.04.002
dc.relation.urihttps://doi.org/10.1016/0254-0584(87)90048-4
dc.relation.urihttps://doi.org/10.1515/REVAC.2010.29.1.25
dc.relation.urihttp://www.iza-structure.org/databases/
dc.relation.urihttps://doi.org/10.1515/geo-2016-0055
dc.relation.urihttps://doi.org/10.1016/0144-2449(83)90177-X
dc.relation.urihttps://doi.org/10.1016/0144-2449(84)90013-7
dc.relation.urihttps://doi.org/10.20535/2218-930022021241332
dc.relation.urihttps://doi.org/10.1515/pac-2014-1117
dc.relation.urihttps://doi.org/10.1023/A:1009662408173
dc.relation.urihttps://doi.org/10.1016/j.apcata.2014.02.026
dc.relation.urihttps://doi.org/10.1021/jp106474x
dc.relation.urihttps://doi.org/10.1021/j100141a032
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Voloshyna Yu., Pertko O., Povazhnyi V., Patrylak L., Yakovenko A., 2023
dc.subjectцеолітвмісна порода
dc.subjectбіфункціональний каталізатор
dc.subjectмодифікування
dc.subjectC6-вуглеводні
dc.subjectкрекінг
dc.subjectгідроізомеризація
dc.subjectzeolite-containing rock
dc.subjectbifunctional catalyst
dc.subjectmodification
dc.subjectC6-hydrocarbons
dc.subjectcracking
dc.subjecthydroisomerization
dc.titleEffect of Modifying the Clinoptilolite-Containing Rocks of Transcarpathia on Their Porous Characteristics and Catalytic Properties in the Conversion of C6-Hydrocarbons
dc.title.alternativeВплив модифікування клиноптилолітвмісних порід Закарпаття на їхні пористі характеристики і каталітичні властивості в перетворенні C6-вуглеводнів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Voloshyna_Y-Effect_of_Modifying_the_373-385.pdf
Size:
907.3 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Voloshyna_Y-Effect_of_Modifying_the_373-385__COVER.png
Size:
555.43 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: