Perspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites

dc.citation.epage877
dc.citation.issue4
dc.citation.spage870
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Geology and Geochemistry of Combustible Minerals of National Academy of Sciences of Ukraine
dc.contributor.authorKochubei, Viktoria
dc.contributor.authorYaremchuk, Yaroslava
dc.contributor.authorMalovanyy, Myroslav
dc.contributor.authorYaholnyk, Svitlana
dc.contributor.authorSlyuzar, Andriy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T08:54:12Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі проаналізовані перспективи застосування природних сорбентів у природоохоронних технологіях. Об’єктом дослідження була глиниста порода з лівого берега верхів’я річки Південний Буг (околиці м. Хмельницький). Збагачення породи монтморилонітом проводили центрифугуванням суспензії глини з отриманням фракції ≤ 5 мкм. Мінеральний склад збагаченої глини встановлювали за даними Х-променевого дифрактометричного та комплексного термічного аналізів. Хімічну активацію збагаченої глини проводили 5 % водним розчином NaCl, фізичну активацію – дією ультразвуку. За результатами фотоколориметричних досліджень знайдено катіонообмінну ємність збагачених природної та активованої ультразвуком глин відносно барвника метиленового блакитного. Здатність катіонів барвника сорбуватись міжшаровим простором монтморилоніту підтверджували даними Х-променевого фазового та комплексного термічного аналізів.
dc.description.abstractThe paper analyzes the perspectives for natural sorbents to be used in environmental technologies. The object of the study is the clay rock from the left side of the upper Pivdennyi Bug river (in the vicinity of the Khmelnytskyi city). The rock was enriched in montmorillonite by centrifugation of a clay suspension to obtain the fraction with a size of less than 5∙10-6 m. The researchers defined the mineral composition of the enriched clay based on the findings of the X-ray diffraction and complex thermal analyses. The enriched clay was chemically activated with a 5% NaCl aqueous solution and physically activated with the action of ultrasound. Based on the results of the X-ray diffraction analysis, the cation exchange capacity (CEC) of enriched clays, both natural and activated by ultrasound, was found against the methylene blue (MB) dye. The findings of the X-ray diffraction and analysis supported the ability of the dye cations to be absorbed by the interlayer spacings of montmorillonite.
dc.format.extent870-877
dc.format.pages8
dc.identifier.citationPerspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites / Viktoria Kochubei, Yaroslava Yaremchuk, Myroslav Malovanyy, Svitlana Yaholnyk, Andriy Slyuzar // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 870–877.
dc.identifier.citationenPerspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites / Viktoria Kochubei, Yaroslava Yaremchuk, Myroslav Malovanyy, Svitlana Yaholnyk, Andriy Slyuzar // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 4. — P. 870–877.
dc.identifier.doidoi.org/10.23939/chcht17.04.870
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63697
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 4 (17), 2023
dc.relation.references[1] Lazaruk, Y.; Karabyn, V. Shale gas in Western Ukraine: Perspectives, Resources, Environmental and Technogenic Risk of Production. Pet. Coal 2020, 62, 836–844. https://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/7543
dc.relation.references[2]Vaskina, I.; Plyatsuk, L.; Vaskin, R.; Ablieieva, I.; Sydorenko S. Patterns of Pollutants Distribution from Vehicles to the Roadside Ecosystems. In Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering; Springer, Cham.; pp 893–902. http://dx.doi.org/10.1007/978-3-030-22365-6_89
dc.relation.references[3] Starodub, Y.; Karabyn, V.; Havrys, A.; Shainoga, I.; Samberg, A. Flood Risk Assessment of Chervonograd Mining-Industrial District. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX (Vol. 10783), Neale, C.M.U.; Maltese, A., Eds.; SPIE: Bellingham, Washington, 2018. https://doi.org/10.1117/12.2501928
dc.relation.references[4] Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21, 88–96. http://dx.doi.org/10.12911/22998993/122188
dc.relation.references[5] Rusyn, I.B.; Moroz, O.M.; Karabyn, V.V.; Kulachkovskyi, O.R.; Hudz, S.P. Biodegradation of oil Hydrocarbons by Candida yeast. J. Microbiol. 2003, 65, 36–42.
dc.relation.references[6] Knysh, I.; Karabyn, V. Heavy Metals Distribution in the Waste Pile Rocks of Chervonogradska Mine of the Lviv-Volyn Coal Basin (Ukraine). Pollution Research 2014, 33, 663–670.
dc.relation.references[7] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.references[8] Hyvlud, A.; Sabadash,V.; Gumnitsky, J.; Ripak, N. Statics and Kinetics of Albumin Adsorption by Natural Zeolite. Chem. Chem. Technol. 2019, 13, 95–100. https://doi.org/10.23939/chcht13.01.095
dc.relation.references[9] Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of Phosphates Sorption by Zeolites Depending on Degree of their Substitution for Potassium Ions. Chem. Chem. Technol. 2016, 10, 235–240. https://doi.org/10.23939/chcht10.02.235
dc.relation.references[10] Danchenko, Y., Andronov, V.; Kariev, A.; Lebedev, V.; Rybka, E.; Meleshchenko, R.; Yavorska, D. Research into Surface Properties of Disperse Fillers Based on Plant Raw Materials. EasternEuropean J. Enterp. Technol. 2017, 5, 20–26. https://doi.org/10.15587/1729-4061.2017.111350
dc.relation.references[11] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.references[12] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
dc.relation.references[13] Kochubei, V.V.; Yaholnyk, S.G.; Kniaz, S.V.; Parashchuk, L.Y.; Malovanyy, M.S. Research into the Influence of Activation Conditions of Transcarpathian Clinoptilolite on its Adsorption Capacity. Voprosy khimii i khimicheskoi tekhnologii 2020, 4, 80–87. https://doi.org/10.32434/0321-4095-2020-131-4-80-87
dc.relation.references[14] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
dc.relation.references[15] Lagaly, G.; Ogawa, M.; Dekany, I. Clay Mineral Organic Interactions. In: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Amsterdam: Elsevier, 2006; pp 309–377. https://doi.org/10.1016/S1572-4352(05)01010-X
dc.relation.references[16] Rajkiran, R. T.; Kartic, C. K.; Upendra, N. Synthesis and Characterization of Novel Organo-Montmorillonites. Applied Clay Sci. 2008, 38, 203–208. https://doi.org/10.1016/j.clay.2007.05.008
dc.relation.references[17] Mockovсiakova, A.; Orolinova, Z.; Skvarla, J. Enhancement of the Bentonite Sorption Properties. J. Hazard. Mater. 2010, 180, 274–281. https://doi.org/10.1016/j.jhazmat.2010.04.027
dc.relation.references[18] Borgnino, L.; Avena, M.J.; De Pauli, C.P. Synthesis and Characterization of Fe(III) Montmorillonites for Phosphate Absorption. Colloids Surf. A: Physicochem. Eng. Asp. 2009, 341, 46–52. http://doi.org/10.1016/j.colsurfa.2009.03.037
dc.relation.references[19] Menezes, R.R.; Marques, L.N.; Campos, L.A.; Ferreira, H.S.; Santana, L.N.L.; Neves, G.A. Use of Statistical Design to Study the Influence of CMC on the Rheological Properties of Bentonite Dispersions for Water-Based Drilling Fluids. Appl Clay Sci. 2010, 49, 13–20. https://doi.org/10.1016/j.clay.2010.03.013
dc.relation.references[20] Vincenzi, S.; Panighel, A.; Gazzola, D.; Flamini, R.; Curioni A. Study of Combined Effect of Proteins and Bentonite Fining on the Wine Aroma Loss. J. Agric. Food Chem. 2015, 63, 2314–2320. https://doi.org/10.1021/jf505657h
dc.relation.references[21] Ifa, L.; Wiyani, L.; Nurdjannah, N.; Muhammad, A.; Ghalib, T.; Ramadhaniar, S.; Kusuma, H.S. Analysis of Bentonite Performance on the Quality of Refined Crude Palm Oil's Color, Free Fatty Acid and Carotene: The Effect of Bentonite Concentration and Contact Time. Heliyon 2021, 7, e07230. https://doi.org/10.1016/j.heliyon.2021.e07230
dc.relation.references[22] Krasinskyi, V.; Suberlyak, O.; Kochubei, V.; Jachowicz, T.; Dulebova, L.; Zemke, V. Nanocomposites Based on Polyamide and Montmorillonite Obtained from a Solution. Adv. Sci. Technol. Res. J. 2020, 14, 192–198. https://doi.org/10.12913/22998624/122297
dc.relation.references[23] Mykhailova, V.A. Non-Metallic Minerals of Ukraine; Kyiv University Publishing House: Kyiv, 2007.
dc.relation.references[24] Menier, A. Clays; Springer-Verlag: Berlin, Heidelberg, 2005.
dc.relation.references[25] Malovanyi, M.S.; Petrushka, I.M. Ochyshchennia stichnykh vod pryrodnymy dyspersnymy sorbentamy; Department of Lviv Polytechnic, 2012.
dc.relation.references[26] Salem, A.; Karimi, L. Physicochemical Variation in Bentonite by Sulfuric Acid Activation. Korean J. Chem. Eng. 2009, 26, 980–984. https://doi.org/10.1007/s11814-009-0162-2
dc.relation.references[27] Boichuk, B.; Kuzyk, A.; Sysa, L.; Pastukhov, P.; Shuplat T. Wastewater Purification from Excess Phosphates Using Bentonite Activated by Microwave Radiation. J. Ecol. Eng. 2022, 23, 251–259. https://doi.org/10.12911/22998993/14713
dc.relation.references[28] Dibrivnyi, V.M.; Serheiev, V.V.; Van-Chyn-Sian, Yu.Ia. Kurs koloidnoi khimii; Intelekt-Zakhid: Lviv, 2008.
dc.relation.references[29] Tarasevich, Yu.I.; Ovcharenko, F.D. Adsorption on Clay Materials; Naukova dumka: Kyiv, 1975.
dc.relation.references[30] Yaremchuk, Ya.V., Kochubei, V.V., Zinchuk, I.M., Malovanyi, M.S. Peculiarities of the Mineral Composition of Clays of Volino-Podillia (Surroundings of Khmelnytskyi). In The Newest Problems of Geology; Kharkiv, 2020; pp 117-119.
dc.relation.references[31] Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; New York, Oxford University Press, 1997.
dc.relation.references[32] Powder diffraction file, Data cards, Inorganic section sets 1-34; JCPDS: Swarthmore, Pennsylvania, 1948–1984.
dc.relation.references[33] Matkovskyi, O.; Kvasnytsia, V.; Naumko, I.; Bilonizhka, P; Hrechanovska, O.; Kvasnytsia, I.; Melnikov, V.; Popp, I.; Skakun, L.; Slyvko, Ye. et al. Mineraly Ukrainskykh Karpat. Sylikaty; Vydavnychyi tsentr LNU im. I. Franka: Lviv, 2011.
dc.relation.references[34] Yaremchuk, Ya.; Kochubei, V. Features of Thermal Dehydration of Clay Minerals of Baden Gypsums from the Shchyrets and Sand Quarries. Mineralohichnyi zbirnyk 2010, 60, 106–115.
dc.relation.references[35] Pansu, M; Gautheyrou, J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; Springer-Verlag Berlin Heidelberg, 2006.
dc.relation.references[36] Saidov, B.Yu.; Alimov, U.K.; Ahmadzhonov, A.N.; Seytnazarov, A.R.; Namazov, Sh.S. The Question of the Prospects for the Use of Bentonite Clay as a Sorbent for the Purification of Various Types of Solutions. Short review. Int. j. appl. nat. sci. 2020, 1, 23–29. https://doi.org/10.24412/2181-144X-2020-1-23-30
dc.relation.references[37] Wilson, J.; Cuadros, J.; Cressey, G. An In situ Time-Resolved XRD-PSD Investigation into Na-Montmorillonite Interlayer and Particle Rearrangement during Dehydration. Clays Clay Miner. 2004, 52, 180–191. https://doi.org/10.1346/CCMN.2004.0520204
dc.relation.references[38] Churakov, S.V. Mobility of Na and Cs on Montmorillonite Surface under Partially Saturated Conditions. Environ. Sci. Technol. 2013, 47, 9816–9823. https://doi.org/10.1021/es401530n
dc.relation.references[39] Novikova, L; Ayrault, P.; Fontaine, C.; Chatel, G.; Jérôme, F.; Belchinskaya, L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates. Ultrason. Sonochem. 2016, 31, 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
dc.relation.references[40] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6, 26–32. https://doi.org/10.15587/1729-4061.2017.116090
dc.relation.references[41] Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals. Іn: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Elsevier: Amsterdam, 2006; pp 19–86.
dc.relation.referencesen[1] Lazaruk, Y.; Karabyn, V. Shale gas in Western Ukraine: Perspectives, Resources, Environmental and Technogenic Risk of Production. Pet. Coal 2020, 62, 836–844. https://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/7543
dc.relation.referencesen[2]Vaskina, I.; Plyatsuk, L.; Vaskin, R.; Ablieieva, I.; Sydorenko S. Patterns of Pollutants Distribution from Vehicles to the Roadside Ecosystems. In Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering; Springer, Cham.; pp 893–902. http://dx.doi.org/10.1007/978-3-030-22365-6_89
dc.relation.referencesen[3] Starodub, Y.; Karabyn, V.; Havrys, A.; Shainoga, I.; Samberg, A. Flood Risk Assessment of Chervonograd Mining-Industrial District. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX (Vol. 10783), Neale, C.M.U.; Maltese, A., Eds.; SPIE: Bellingham, Washington, 2018. https://doi.org/10.1117/12.2501928
dc.relation.referencesen[4] Tymchuk, I.; Shkvirko, O.; Sakalova, H.; Malovanyy, M.; Dabizhuk, T.; Shevchuk, O.; Matviichuk, O.; Vasylinych, T. Wastewater a Source of Nutrients for Crops Growth and Development. J. Ecol. Eng. 2020, 21, 88–96. http://dx.doi.org/10.12911/22998993/122188
dc.relation.referencesen[5] Rusyn, I.B.; Moroz, O.M.; Karabyn, V.V.; Kulachkovskyi, O.R.; Hudz, S.P. Biodegradation of oil Hydrocarbons by Candida yeast. J. Microbiol. 2003, 65, 36–42.
dc.relation.referencesen[6] Knysh, I.; Karabyn, V. Heavy Metals Distribution in the Waste Pile Rocks of Chervonogradska Mine of the Lviv-Volyn Coal Basin (Ukraine). Pollution Research 2014, 33, 663–670.
dc.relation.referencesen[7] Gumnitsky, J.; Sabadash, V.; Matsuska, O.; Lyuta, O.; Hyvlud, A.; Venger, L. Dynamics of Adsorption of Copper Ions in Fixed-Bed Column and Mathematical Interpretation of the First Stage of the Process. Chem. Chem. Technol. 2022, 16, 267–273. https://doi.org/10.23939/chcht16.02.267
dc.relation.referencesen[8] Hyvlud, A.; Sabadash,V.; Gumnitsky, J.; Ripak, N. Statics and Kinetics of Albumin Adsorption by Natural Zeolite. Chem. Chem. Technol. 2019, 13, 95–100. https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesen[9] Sabadash, V.; Gumnitsky, J.; Hyvlyud, A. Mechanism of Phosphates Sorption by Zeolites Depending on Degree of their Substitution for Potassium Ions. Chem. Chem. Technol. 2016, 10, 235–240. https://doi.org/10.23939/chcht10.02.235
dc.relation.referencesen[10] Danchenko, Y., Andronov, V.; Kariev, A.; Lebedev, V.; Rybka, E.; Meleshchenko, R.; Yavorska, D. Research into Surface Properties of Disperse Fillers Based on Plant Raw Materials. EasternEuropean J. Enterp. Technol. 2017, 5, 20–26. https://doi.org/10.15587/1729-4061.2017.111350
dc.relation.referencesen[11] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
dc.relation.referencesen[12] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
dc.relation.referencesen[13] Kochubei, V.V.; Yaholnyk, S.G.; Kniaz, S.V.; Parashchuk, L.Y.; Malovanyy, M.S. Research into the Influence of Activation Conditions of Transcarpathian Clinoptilolite on its Adsorption Capacity. Voprosy khimii i khimicheskoi tekhnologii 2020, 4, 80–87. https://doi.org/10.32434/0321-4095-2020-131-4-80-87
dc.relation.referencesen[14] Malovanyy, M.; Petrushka, K.; Petrushka, I. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chem. Chem. Technol. 2019, 13, 372–376. https://doi.org/10.23939/chcht13.03.372
dc.relation.referencesen[15] Lagaly, G.; Ogawa, M.; Dekany, I. Clay Mineral Organic Interactions. In: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Amsterdam: Elsevier, 2006; pp 309–377. https://doi.org/10.1016/S1572-4352(05)01010-X
dc.relation.referencesen[16] Rajkiran, R. T.; Kartic, C. K.; Upendra, N. Synthesis and Characterization of Novel Organo-Montmorillonites. Applied Clay Sci. 2008, 38, 203–208. https://doi.org/10.1016/j.clay.2007.05.008
dc.relation.referencesen[17] Mockovsiakova, A.; Orolinova, Z.; Skvarla, J. Enhancement of the Bentonite Sorption Properties. J. Hazard. Mater. 2010, 180, 274–281. https://doi.org/10.1016/j.jhazmat.2010.04.027
dc.relation.referencesen[18] Borgnino, L.; Avena, M.J.; De Pauli, C.P. Synthesis and Characterization of Fe(III) Montmorillonites for Phosphate Absorption. Colloids Surf. A: Physicochem. Eng. Asp. 2009, 341, 46–52. http://doi.org/10.1016/j.colsurfa.2009.03.037
dc.relation.referencesen[19] Menezes, R.R.; Marques, L.N.; Campos, L.A.; Ferreira, H.S.; Santana, L.N.L.; Neves, G.A. Use of Statistical Design to Study the Influence of CMC on the Rheological Properties of Bentonite Dispersions for Water-Based Drilling Fluids. Appl Clay Sci. 2010, 49, 13–20. https://doi.org/10.1016/j.clay.2010.03.013
dc.relation.referencesen[20] Vincenzi, S.; Panighel, A.; Gazzola, D.; Flamini, R.; Curioni A. Study of Combined Effect of Proteins and Bentonite Fining on the Wine Aroma Loss. J. Agric. Food Chem. 2015, 63, 2314–2320. https://doi.org/10.1021/jf505657h
dc.relation.referencesen[21] Ifa, L.; Wiyani, L.; Nurdjannah, N.; Muhammad, A.; Ghalib, T.; Ramadhaniar, S.; Kusuma, H.S. Analysis of Bentonite Performance on the Quality of Refined Crude Palm Oil's Color, Free Fatty Acid and Carotene: The Effect of Bentonite Concentration and Contact Time. Heliyon 2021, 7, e07230. https://doi.org/10.1016/j.heliyon.2021.e07230
dc.relation.referencesen[22] Krasinskyi, V.; Suberlyak, O.; Kochubei, V.; Jachowicz, T.; Dulebova, L.; Zemke, V. Nanocomposites Based on Polyamide and Montmorillonite Obtained from a Solution. Adv. Sci. Technol. Res. J. 2020, 14, 192–198. https://doi.org/10.12913/22998624/122297
dc.relation.referencesen[23] Mykhailova, V.A. Non-Metallic Minerals of Ukraine; Kyiv University Publishing House: Kyiv, 2007.
dc.relation.referencesen[24] Menier, A. Clays; Springer-Verlag: Berlin, Heidelberg, 2005.
dc.relation.referencesen[25] Malovanyi, M.S.; Petrushka, I.M. Ochyshchennia stichnykh vod pryrodnymy dyspersnymy sorbentamy; Department of Lviv Polytechnic, 2012.
dc.relation.referencesen[26] Salem, A.; Karimi, L. Physicochemical Variation in Bentonite by Sulfuric Acid Activation. Korean J. Chem. Eng. 2009, 26, 980–984. https://doi.org/10.1007/s11814-009-0162-2
dc.relation.referencesen[27] Boichuk, B.; Kuzyk, A.; Sysa, L.; Pastukhov, P.; Shuplat T. Wastewater Purification from Excess Phosphates Using Bentonite Activated by Microwave Radiation. J. Ecol. Eng. 2022, 23, 251–259. https://doi.org/10.12911/22998993/14713
dc.relation.referencesen[28] Dibrivnyi, V.M.; Serheiev, V.V.; Van-Chyn-Sian, Yu.Ia. Kurs koloidnoi khimii; Intelekt-Zakhid: Lviv, 2008.
dc.relation.referencesen[29] Tarasevich, Yu.I.; Ovcharenko, F.D. Adsorption on Clay Materials; Naukova dumka: Kyiv, 1975.
dc.relation.referencesen[30] Yaremchuk, Ya.V., Kochubei, V.V., Zinchuk, I.M., Malovanyi, M.S. Peculiarities of the Mineral Composition of Clays of Volino-Podillia (Surroundings of Khmelnytskyi). In The Newest Problems of Geology; Kharkiv, 2020; pp 117-119.
dc.relation.referencesen[31] Moore, D.M.; Reynolds, R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; New York, Oxford University Press, 1997.
dc.relation.referencesen[32] Powder diffraction file, Data cards, Inorganic section sets 1-34; JCPDS: Swarthmore, Pennsylvania, 1948–1984.
dc.relation.referencesen[33] Matkovskyi, O.; Kvasnytsia, V.; Naumko, I.; Bilonizhka, P; Hrechanovska, O.; Kvasnytsia, I.; Melnikov, V.; Popp, I.; Skakun, L.; Slyvko, Ye. et al. Mineraly Ukrainskykh Karpat. Sylikaty; Vydavnychyi tsentr LNU im. I. Franka: Lviv, 2011.
dc.relation.referencesen[34] Yaremchuk, Ya.; Kochubei, V. Features of Thermal Dehydration of Clay Minerals of Baden Gypsums from the Shchyrets and Sand Quarries. Mineralohichnyi zbirnyk 2010, 60, 106–115.
dc.relation.referencesen[35] Pansu, M; Gautheyrou, J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; Springer-Verlag Berlin Heidelberg, 2006.
dc.relation.referencesen[36] Saidov, B.Yu.; Alimov, U.K.; Ahmadzhonov, A.N.; Seytnazarov, A.R.; Namazov, Sh.S. The Question of the Prospects for the Use of Bentonite Clay as a Sorbent for the Purification of Various Types of Solutions. Short review. Int. j. appl. nat. sci. 2020, 1, 23–29. https://doi.org/10.24412/2181-144X-2020-1-23-30
dc.relation.referencesen[37] Wilson, J.; Cuadros, J.; Cressey, G. An In situ Time-Resolved XRD-PSD Investigation into Na-Montmorillonite Interlayer and Particle Rearrangement during Dehydration. Clays Clay Miner. 2004, 52, 180–191. https://doi.org/10.1346/CCMN.2004.0520204
dc.relation.referencesen[38] Churakov, S.V. Mobility of Na and Cs on Montmorillonite Surface under Partially Saturated Conditions. Environ. Sci. Technol. 2013, 47, 9816–9823. https://doi.org/10.1021/es401530n
dc.relation.referencesen[39] Novikova, L; Ayrault, P.; Fontaine, C.; Chatel, G.; Jérôme, F.; Belchinskaya, L. Effect of Low Frequency Ultrasound on the Surface Properties of Natural Aluminosilicates. Ultrason. Sonochem. 2016, 31, 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014
dc.relation.referencesen[40] Kontsur, A.; Sysa, L.; Petrova, M. Investigation of Copper Adsorption on Natural and Microwave-Treated Bentonite. EasternEuropean J. Enterp. Technol. 2017, 6, 26–32. https://doi.org/10.15587/1729-4061.2017.116090
dc.relation.referencesen[41] Brigatti, M.F.; Galan, E.; Theng, B.K.G. Structures and Mineralogy of Clay Minerals. In: Handbook of Clay Science; Bergaya, F.; Theng, B.K.G.; Lagaly, G., Eds; Elsevier: Amsterdam, 2006; pp 19–86.
dc.relation.urihttps://sci.ldubgd.edu.ua:8080/jspui/handle/123456789/7543
dc.relation.urihttp://dx.doi.org/10.1007/978-3-030-22365-6_89
dc.relation.urihttps://doi.org/10.1117/12.2501928
dc.relation.urihttp://dx.doi.org/10.12911/22998993/122188
dc.relation.urihttps://doi.org/10.23939/chcht16.02.267
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.23939/chcht10.02.235
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.111350
dc.relation.urihttps://doi.org/10.24425/jwld.2020.135043
dc.relation.urihttps://doi.org/10.23939/chcht14.03.386
dc.relation.urihttps://doi.org/10.32434/0321-4095-2020-131-4-80-87
dc.relation.urihttps://doi.org/10.23939/chcht13.03.372
dc.relation.urihttps://doi.org/10.1016/S1572-4352(05)01010-X
dc.relation.urihttps://doi.org/10.1016/j.clay.2007.05.008
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2010.04.027
dc.relation.urihttp://doi.org/10.1016/j.colsurfa.2009.03.037
dc.relation.urihttps://doi.org/10.1016/j.clay.2010.03.013
dc.relation.urihttps://doi.org/10.1021/jf505657h
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2021.e07230
dc.relation.urihttps://doi.org/10.12913/22998624/122297
dc.relation.urihttps://doi.org/10.1007/s11814-009-0162-2
dc.relation.urihttps://doi.org/10.12911/22998993/14713
dc.relation.urihttps://doi.org/10.24412/2181-144X-2020-1-23-30
dc.relation.urihttps://doi.org/10.1346/CCMN.2004.0520204
dc.relation.urihttps://doi.org/10.1021/es401530n
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2016.02.014
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.116090
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kochubei V., Yaremchuk Ya., Malovanyy M., Yaholnyk S., Slyuzar A.,2023
dc.subjectприродні сорбенти
dc.subjectбентонітовіглини
dc.subjectультразвук
dc.subjectприродоохоронні технології
dc.subjectмонтморилоніт
dc.subjectnatural sorbents
dc.subjectbentonite clays
dc.subjectultrasound
dc.subjectenvironmental technologies
dc.subjectmontmorillonite
dc.titlePerspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites
dc.title.alternativeПерспективи очищення водних середовищ від полютантів активованими ультразвуком бентонітами
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v17n4_Kochubei_V-Perspectives_of_Treatment_870-877.pdf
Size:
619.13 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v17n4_Kochubei_V-Perspectives_of_Treatment_870-877__COVER.png
Size:
559.95 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: