Validation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography

dc.citation.epage22
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage16
dc.citation.volume18
dc.contributor.affiliationAzerbaijan Medical University
dc.contributor.authorSuleymanov, Tahir
dc.contributor.authorAliyeva, Kubra
dc.contributor.authorBalayeva, Emilya
dc.contributor.authorMansurova, Leyla
dc.contributor.authorJalilova, Kamala
dc.contributor.authorAliyeva, Sabina
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:55Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractУ дослідженні валідовано метод ВЕРХ для кількісного визначення нарингіну в екстракті грейпфрута. Продемонстровано високу точність, прецизійність і відтворюваність методу з вилученням від 99,73 % до 100,65 %. Лінійність методу була підтверджена коефіцієнтом кореляції 0,999. Ці результати мають важливе значення для фармацевтичної розробки препаратів на основі грейпфрутів.
dc.description.abstractThe study validates the HPLC method for quantifying naringin in a grapefruit extract. The demonstrated high accuracy, precision, and reproducibility were achieved with recovery ranging from 99.73 % to 100.65 %. The method linearity was confirmed by a correlation coefficient of 0.999. These findings have significant implications for grapefruit-based pharmaceutical development.
dc.format.extent16-22
dc.format.pages7
dc.identifier.citationValidation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography / Tahir Suleymanov, Kubra Aliyeva, Emilya Balayeva, Leyla Mansurova, Kamala Jalilova, Sabina Aliyeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 16–22.
dc.identifier.citationenValidation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography / Tahir Suleymanov, Kubra Aliyeva, Emilya Balayeva, Leyla Mansurova, Kamala Jalilova, Sabina Aliyeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 16–22.
dc.identifier.doidoi.org/10.23939/chcht18.01.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111779
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Quintão, W.S.C.; Ferreira-Nunes, R.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Validation of a Simple Chromatographic Method for Naringenin Quantification in Skin Permeation Experiments. J. Chromatogr. B. 2022, 1201-1202, 123291. https://doi.org/10.1016/j.jchromb.2022.123291
dc.relation.references[2] Jha, D.K.; Shah, D.S.; Talele, S.R.; Amin, D. Correlation of Two Validated Methods for the Quantification of Naringenin in its Solid Dispersion: HPLC and UV Spectrophotometric Methods. SN Appl. Sci. 2020, 2, 698. https://doi.org/10.1007/s42452-020-2536-3
dc.relation.references[3] Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and Naringenin Determination and Control in Grapefruit Juice by a Validated HPLC Method. Food Control 2008, 19, 432-438. https://doi.org/10.1016/j.foodcont.2007.05.007
dc.relation.references[4] Caccamese, S.; Chillemi, R. Racemization at C-2 of Naringin in Pummelo (Citrus Grandis) with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Chromatogr. A 2010, 1217, 1089-1093. https://doi.org/10.1016/j.chroma.2009.10.073
dc.relation.references[5] Asghari, A.; Barfi, B.; Barfi, A.; Saeidi, I.; Ghollasi Moud, F.; Peyrovi, M.; Beig Babaei, A. Comparison between Conventional Solid Phase Extraction and Its Simplified Method for HPLC Determination of Five Flavonoids in Orange, Tangerine, and Lime Juice Samples. Acta Chromatogr. 2014, 26, 157-175. https://doi.org/10.1016/j.chroma.2013.08.078
dc.relation.references[6] Liu, E.-H.; Zhao, P.; Duan, L.; Zheng, G.-D.; Guo, L.; Yang, H.; Li, P. Simultaneous Determination of Six Bioactive Flavonoids in Citri Reticulatae Pericarpium by Rapid Resolution Liquid Chromatography Coupled with Triple Quadrupole Electrospray Tandem Mass Spectrometry. Food Chem. 2013, 141, 3977-3983. https://doi.org/10.1016/j.foodchem.2013.06.077
dc.relation.references[7] Baranowska, I.; Hejniak, J.; Magiera, S. Development and Validation of a RP-UHPLC-ESI-MS/MS Method for the Chiral Separation and Determination of Flavanone, Naringenin and Hesperetin Enantiomers. Talanta 2016, 159, 181-188. https://doi.org/10.1016/j.talanta.2016.06.020
dc.relation.references[8] Csuti, A.; Sik, B.; Ajtony, Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - A Review. Crit Rev Anal Chem. 2022, 1-14. https://doi.org/10.1080/10408347.2022.2082241
dc.relation.references[9] Suleymanov, T.A.; Balayeva, E.Z.; Akhmedov, E.Yu. Development and Determination of Validation Parameters for the HPLC Method of Thymol Quantification in "Kalinol Plus" Syrup. News of Pharmacy 2016, 3. https://doi.org/10.24959/nphj.16.2117
dc.relation.references[10] Foods Program Methods Validation Processes and Guidelines. 2021. https://www.fda.gov/food/laboratory-methods-food/foodsp-rogram-methods-validation-processes-and-guidelines
dc.relation.references[11] Foods Program Compendium of Analytical Laboratory Methods. 2023. https://www.fda.gov/food/laboratory-methods-food/foods-program-compendium-analytical-laboratory-methods
dc.relation.references[12] Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd Edition U.S. Food and Drug Administration Foods Program. 2019. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER207/Validation_Methods/b-Chemical-Methods-Validation-Guidelines_3rd-ed_RSSC-508_final_12_06_19.pdf
dc.relation.references[13] ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). ICH: Geneva, 1995.
dc.relation.references[14] Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. https://doi.org/10.3390/foods9091206
dc.relation.references[15] Martín, J.F.; Liras, P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics 2022, 11, 82. https://doi.org/10.3390/ANTIBIOTICS11010082
dc.relation.references[16] Guttman, Y.; Yedidia, I.; Nudel, A.; Zhmykhova, Y.; Kerem, Z.; Carmi, N. New Grapefruit Cultivars Exhibit Low Cytochrome P4503A4-Inhibition Activity. Food Chem. Toxicol. 2020, 137, 111135. https://doi.org/10.1016/J.FCT.2020.111135
dc.relation.references[17] Ferreira-Nunes, R.; Angelo, T.; da Silva, S.M.M.; Magalhães, O.; Gratieri, T.; da Cunha-Filho, M.S.S.; Gelfuso, G.M. Versatile Chromatographic Method for Catechin Determination in Development of Topical Formulations Containing Natural Extracts. Biomed. Chromatogr. 2018, 32, e4062. https://doi.org/10.1002/bmc.4062
dc.relation.references[18] Agrawal, K.; Agrawal, C.; Blunden, G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat. Prod. Commun. 2021, 16. https://doi.org/10.1177/1934578X211042540
dc.relation.references[19] Qurtam, A.A.; Mechchate, H.; Es-safi, I.; Al-zharani; M., Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M. Citrus Flavanone Narirutin, in vitro and in silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. https://doi.org/10.3390/pharmaceutics13111818
dc.relation.references[20] Priyadarsani, S.; Patel, A.S.; Kar, A.; Dash, S. Process Optimization for the Supercritical Carbondioxide Extraction of Lycopene from Ripe Grapefruit (Citrus paradisi) Endocarp. Sci. Rep. 2021, 11, 10273. https://doi.org/10.1038/s41598-021-89772-6
dc.relation.referencesen[1] Quintão, W.S.C.; Ferreira-Nunes, R.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Validation of a Simple Chromatographic Method for Naringenin Quantification in Skin Permeation Experiments. J. Chromatogr. B. 2022, 1201-1202, 123291. https://doi.org/10.1016/j.jchromb.2022.123291
dc.relation.referencesen[2] Jha, D.K.; Shah, D.S.; Talele, S.R.; Amin, D. Correlation of Two Validated Methods for the Quantification of Naringenin in its Solid Dispersion: HPLC and UV Spectrophotometric Methods. SN Appl. Sci. 2020, 2, 698. https://doi.org/10.1007/s42452-020-2536-3
dc.relation.referencesen[3] Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and Naringenin Determination and Control in Grapefruit Juice by a Validated HPLC Method. Food Control 2008, 19, 432-438. https://doi.org/10.1016/j.foodcont.2007.05.007
dc.relation.referencesen[4] Caccamese, S.; Chillemi, R. Racemization at C-2 of Naringin in Pummelo (Citrus Grandis) with Increasing Maturity Determined by Chiral High-Performance Liquid Chromatography. J. Chromatogr. A 2010, 1217, 1089-1093. https://doi.org/10.1016/j.chroma.2009.10.073
dc.relation.referencesen[5] Asghari, A.; Barfi, B.; Barfi, A.; Saeidi, I.; Ghollasi Moud, F.; Peyrovi, M.; Beig Babaei, A. Comparison between Conventional Solid Phase Extraction and Its Simplified Method for HPLC Determination of Five Flavonoids in Orange, Tangerine, and Lime Juice Samples. Acta Chromatogr. 2014, 26, 157-175. https://doi.org/10.1016/j.chroma.2013.08.078
dc.relation.referencesen[6] Liu, E.-H.; Zhao, P.; Duan, L.; Zheng, G.-D.; Guo, L.; Yang, H.; Li, P. Simultaneous Determination of Six Bioactive Flavonoids in Citri Reticulatae Pericarpium by Rapid Resolution Liquid Chromatography Coupled with Triple Quadrupole Electrospray Tandem Mass Spectrometry. Food Chem. 2013, 141, 3977-3983. https://doi.org/10.1016/j.foodchem.2013.06.077
dc.relation.referencesen[7] Baranowska, I.; Hejniak, J.; Magiera, S. Development and Validation of a RP-UHPLC-ESI-MS/MS Method for the Chiral Separation and Determination of Flavanone, Naringenin and Hesperetin Enantiomers. Talanta 2016, 159, 181-188. https://doi.org/10.1016/j.talanta.2016.06.020
dc.relation.referencesen[8] Csuti, A.; Sik, B.; Ajtony, Z. Measurement of Naringin from Citrus Fruits by High-Performance Liquid Chromatography - A Review. Crit Rev Anal Chem. 2022, 1-14. https://doi.org/10.1080/10408347.2022.2082241
dc.relation.referencesen[9] Suleymanov, T.A.; Balayeva, E.Z.; Akhmedov, E.Yu. Development and Determination of Validation Parameters for the HPLC Method of Thymol Quantification in "Kalinol Plus" Syrup. News of Pharmacy 2016, 3. https://doi.org/10.24959/nphj.16.2117
dc.relation.referencesen[10] Foods Program Methods Validation Processes and Guidelines. 2021. https://www.fda.gov/food/laboratory-methods-food/foodsp-rogram-methods-validation-processes-and-guidelines
dc.relation.referencesen[11] Foods Program Compendium of Analytical Laboratory Methods. 2023. https://www.fda.gov/food/laboratory-methods-food/foods-program-compendium-analytical-laboratory-methods
dc.relation.referencesen[12] Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd Edition U.S. Food and Drug Administration Foods Program. 2019. https://s27415.pcdn.co/wp-content/uploads/2020/01/64ER207/Validation_Methods/b-Chemical-Methods-Validation-Guidelines_3rd-ed_RSSC-508_final_12_06_19.pdf
dc.relation.referencesen[13] ICH Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2(R1). ICH: Geneva, 1995.
dc.relation.referencesen[14] Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. https://doi.org/10.3390/foods9091206
dc.relation.referencesen[15] Martín, J.F.; Liras, P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics 2022, 11, 82. https://doi.org/10.3390/ANTIBIOTICS11010082
dc.relation.referencesen[16] Guttman, Y.; Yedidia, I.; Nudel, A.; Zhmykhova, Y.; Kerem, Z.; Carmi, N. New Grapefruit Cultivars Exhibit Low Cytochrome P4503A4-Inhibition Activity. Food Chem. Toxicol. 2020, 137, 111135. https://doi.org/10.1016/J.FCT.2020.111135
dc.relation.referencesen[17] Ferreira-Nunes, R.; Angelo, T.; da Silva, S.M.M.; Magalhães, O.; Gratieri, T.; da Cunha-Filho, M.S.S.; Gelfuso, G.M. Versatile Chromatographic Method for Catechin Determination in Development of Topical Formulations Containing Natural Extracts. Biomed. Chromatogr. 2018, 32, e4062. https://doi.org/10.1002/bmc.4062
dc.relation.referencesen[18] Agrawal, K.; Agrawal, C.; Blunden, G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat. Prod. Commun. 2021, 16. https://doi.org/10.1177/1934578X211042540
dc.relation.referencesen[19] Qurtam, A.A.; Mechchate, H.; Es-safi, I.; Al-zharani; M., Nasr, F.A.; Noman, O.M.; Aleissa, M.; Imtara, H.; Aleissa, A.M.; Bouhrim, M. Citrus Flavanone Narirutin, in vitro and in silico Mechanistic Antidiabetic Potential. Pharmaceutics 2021, 13, 1818. https://doi.org/10.3390/pharmaceutics13111818
dc.relation.referencesen[20] Priyadarsani, S.; Patel, A.S.; Kar, A.; Dash, S. Process Optimization for the Supercritical Carbondioxide Extraction of Lycopene from Ripe Grapefruit (Citrus paradisi) Endocarp. Sci. Rep. 2021, 11, 10273. https://doi.org/10.1038/s41598-021-89772-6
dc.relation.urihttps://doi.org/10.1016/j.jchromb.2022.123291
dc.relation.urihttps://doi.org/10.1007/s42452-020-2536-3
dc.relation.urihttps://doi.org/10.1016/j.foodcont.2007.05.007
dc.relation.urihttps://doi.org/10.1016/j.chroma.2009.10.073
dc.relation.urihttps://doi.org/10.1016/j.chroma.2013.08.078
dc.relation.urihttps://doi.org/10.1016/j.foodchem.2013.06.077
dc.relation.urihttps://doi.org/10.1016/j.talanta.2016.06.020
dc.relation.urihttps://doi.org/10.1080/10408347.2022.2082241
dc.relation.urihttps://doi.org/10.24959/nphj.16.2117
dc.relation.urihttps://www.fda.gov/food/laboratory-methods-food/foodsp-rogram-methods-validation-processes-and-guidelines
dc.relation.urihttps://www.fda.gov/food/laboratory-methods-food/foods-program-compendium-analytical-laboratory-methods
dc.relation.urihttps://s27415.pcdn.co/wp-content/uploads/2020/01/64ER207/Validation_Methods/b-Chemical-Methods-Validation-Guidelines_3rd-ed_RSSC-508_final_12_06_19.pdf
dc.relation.urihttps://doi.org/10.3390/foods9091206
dc.relation.urihttps://doi.org/10.3390/ANTIBIOTICS11010082
dc.relation.urihttps://doi.org/10.1016/J.FCT.2020.111135
dc.relation.urihttps://doi.org/10.1002/bmc.4062
dc.relation.urihttps://doi.org/10.1177/1934578X211042540
dc.relation.urihttps://doi.org/10.3390/pharmaceutics13111818
dc.relation.urihttps://doi.org/10.1038/s41598-021-89772-6
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Suleymanov T., Aliyeva K., Balayeva E., Mansurova L., Jalilova K., Aliyeva S., 2024
dc.subjectнарингін
dc.subjectнарингенін
dc.subjectвалідація
dc.subjectлінійність
dc.subjectВЕРХ-ДМД
dc.subjectnaringin
dc.subjectnaringenin
dc.subjectvalidation
dc.subjectlinearity
dc.subjectHPLC-DAD
dc.titleValidation of the Method for Quantifying Naringin in Grapefruit (Citrus paradisi) Extract Using High-Performance Liquid Chromatography
dc.title.alternativeВалідація методу кількісного визначення нарингіну в екстракті грейпфрута (citrus paradisi) за допомогою високоефективної рідинної хроматографії
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Suleymanov_T-Validation_of_the_Method_16-22.pdf
Size:
4.86 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Suleymanov_T-Validation_of_the_Method_16-22__COVER.png
Size:
570.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: