Anomalous Sorption of Neodymium and Praseodymium Ions by Intergel System Polyacrylic Acid Hydrogel – Poly-4-Vinylpyridine Hydrogel

dc.citation.epage14
dc.citation.issue1
dc.citation.spage7
dc.contributor.affiliationJSC “Institute of Chemical Sciences after A. B. Bekturov”
dc.contributor.authorJumadilov, Talkybek
dc.contributor.authorKondaurov, Ruslan
dc.contributor.authorImangazy, Aldan
dc.contributor.authorKhimersen, Khuangul
dc.contributor.authorMalimbayeva, Zamira
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:32Z
dc.date.available2024-01-22T10:41:32Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractВивчені сорбційні властивості (ступінь сорбції, ступінь зв'язування полімерних ланцюгів) інтергельної системи гідрогель поліакрилової кислоти (hPAA) - гідрогель полі-4-вінілпіридину (hP4VP) щодо йонів неодиму та празеодіму. Встановлено, що віддалена взаємодія полімерів у міжгелевих парах забезпечує суттєві зміни електрохімічних та об'ємних гравіметричних властивостей. Визначено суттєве збільшення ступеня набухання hPAA при співвідношенні 17%hPAA-83%hP4VP; а hP4VP – при співвідношенні 83%hPAA-17%hP4VP. Показано, що самі гідрогелі PAA та P4VP не мають достатньо високих сорбційних властивостей – ступінь сорбції йонів неодиму та празеодіму не перевищує 65 %, ступінь зв'язування полімерних ланцюгів не перевищує 55 %. Висока йонізація hPAA та hP4VP завдяки ефекту віддаленої взаємодії забезпечує значне покращення (до 30 %) сорбційних властивостей. Максимальна сорбція йонів неодиму та празеодіму спостерігається при співвідношенні 83% hPAA-17%hP4VP та 50%hPAA-50%hP4VP (ступінь сорбції становить 93,5 % та 93,6 % відповідно). Найвищі значення ступеня зв'язування полімерних ланцюгів (щодо йонів неодиму та празеодіму) спостерігаються при співвідношенні 83%hPAA-17%hP4VP та 50%hPAA-50%hP4VP – ступінь зв'язування становить 73,2 % та 75,4 % відповідно. Показано, що віддалена взаємодія надає можливості для створення інноваційних сорбційних технологій для вибіркової сорбції рідкісноземельних елементів.
dc.description.abstractThis paper is devoted to study of sorption properties (sorption degree, polymer chain binding degree) of intergel system hydrogel of polyacrylic acid (hPAA) – hydrogel of poly-4-vinylpyridine (hP4VP) in relation to neodymium and praseodymium ions. It was found that remote interaction of the polymers in intergel pairs provides significant changes of the electrochemical and volume gravimetric properties. Strong increase of the swelling degree of hPAA is observed at the ratio 17%hPAA-83%hP4VP; significant increase of swelling degree of hP4VP is observed at the ratio 83%hPAA-17%hP4VP. Individual hydrogels of PAA and P4VP do not have sufficiently high sorption properties – sorption degree of neodymium and praseodymium ions is not higher than 65 %, polymer chain binding degree is not higher than 55 %. High ionization of hPAA and hP4VP due to remote interaction effect provides significant increase (up to 30 %) of the sorption properties. Maximum sorption of neodymium and praseodymium ions occurs at the ratios 83%hPAA-17%hP4VP and 50%hPAA-50%hP4VP (sorption degree is 93.5 % and 93.6 %, respectively). The highest values of polymer chain binding degree (in relation to neodymium and praseodymium ions) are observed at the ratios 83%hPAA-17%hP4VP and 50%hPAA-50%hP4VP – binding degree is 73.2 % and 75.4 %, respectively. Remote interaction provides possibilities for creation of innovative sorption technologies for selective sorption of aimed rare-earth elements.
dc.format.extent7-14
dc.format.pages8
dc.identifier.citationAnomalous Sorption of Neodymium and Praseodymium Ions by Intergel System Polyacrylic Acid Hydrogel – Poly-4-Vinylpyridine Hydrogel / Talkybek Jumadilov, Ruslan Kondaurov, Aldan Imangazy, Khuangul Khimersen, Zamira Malimbayeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 7–14.
dc.identifier.citationenAnomalous Sorption of Neodymium and Praseodymium Ions by Intergel System Polyacrylic Acid Hydrogel – Poly-4-Vinylpyridine Hydrogel / Talkybek Jumadilov, Ruslan Kondaurov, Aldan Imangazy, Khuangul Khimersen, Zamira Malimbayeva // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 7–14.
dc.identifier.doidoi.org/10.23939/chcht16.01.007
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60954
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Mulder, M. Basic Principles of Membrane Technology; Springer: Netherlands, 1996. https://doi.org/10.1007/978-94-009-1766-8
dc.relation.references[2] Khaing Z., Troshkina A.: Sorp. Chromatogr. Proc., 2006, 6, 972.
dc.relation.references[3] Ion Exchangers; Dorfner, K., Ed.; Walter de Gruyter: Berlin, 1991. https://doi.org/10.1515/9783110862430
dc.relation.references[4] Harland, C.E. Ion Exchange: Theory and Practice, 2nd edn.; The Royal Society of Chemistry, 1994. https://doi.org/10.1039/9781847551184
dc.relation.references[5] Alekseeva, S.L.; Bolotin, S.N.; Tsupko, T.G. Sorption of Cr(VI) on AV-17 and EDE-10P Anion Exchangers, KU-2 and KB-4 Cation Exchangers, Activated Charcoal, and Foamed Graphite (STRG) is Studied. J. Appl. Chem. 2007, 80, 376-378. https://doi.org/10.1134/S107042720703007X
dc.relation.references[6] Ergozhin, E.; Begenova, B. Polielektrolity i Kompleksiony; Evero: Almaty, 2010.
dc.relation.references[7] Ion Exchange: Highlights of Russian Science; Muraviev, D.; Gorshkov, V.; Warshawsky, A., Eds.; Marcel Dekker: New York, 2000.
dc.relation.references[8] Zagorodni, A. Ion Exchange Materials: Properties and Applications, 1st ed.; Elsevier Science, 2006.
dc.relation.references[9] Dzhafarov, V.D.; Alyev, N.A.; Guseinov, E.T.; Efendiev, A.A. Synthesis of Polymerizable Oligomers via Cationic Polymerization of α-Oxides. Polym. Sci. B, 2008, 50, 83-87. https://doi.org/10.1134/S156009040803010X
dc.relation.references[10] Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-398. https://doi.org/10.1021/ie801242v
dc.relation.references[11] Membrane Science and Technology; Osada, Y.; Nakagawa, T., Eds.; Marcel Dekker: New York, 1992.
dc.relation.references[12] Zeman, L.; Zydney, A. Microfiltration and Ultrafitration, Principles and Applications; Marcel Dekker: New York, 1996.
dc.relation.references[13] Van Reis, R.; Zydney, A. Bioprocess Membrane Technology. J. Membrane Sci., 2007, 297, 16-50. https://doi.org/10.1016/j.memsci.2007.02.045
dc.relation.references[14] Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269.
dc.relation.references[15] Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers, Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, Sept 1-4, 2013; Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013; p 43.
dc.relation.references[16] Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Book of Abstracts, International Conference of Lithuanian Chemical Society “Chemistry and Chemical Technology”, Lithuania, Kaunas, 2014; Kaunas University of Technology: Kaunas, 2014, pp 226-229.
dc.relation.references[17] Jumadilov, T.; Abilov, Zh.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and poly-4-Vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459-462. https://doi.org/10.23939/chcht09.04.459
dc.relation.references[18] Jumadilov T., Akimov A. Eskaliyeva G., Kondaurov R. Features of Polyvalent Metals Sorption by Intergel Systems. Book of Abstracts. VІІI International Scientific-Technical Conference Advance in Petroleum and Gas Industry and Petrochemistry, Lviv, Ukraine, May 16-21, 2016; Lviv Polytechnic Publishing House: Lviv, 2016, p 68.
dc.relation.references[19] Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
dc.relation.references[20] Suberlyak, O.; Mel’nyk, Y.; Skorokhoda, V. Regularities of Preparation and Properties of Hydrogel Membranes. Mater. Sci. 2015, 50, 889-896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.references[21] Grytsenko, O.; Suberlyak, O.; Moravskyi, V.; Gayduk, A. Investigation of Nickel Chemical Precipitation Kinetics. East-Eur. J. Enterpr. Technol. 2016, 1, 26-31. https://doi.org/10.15587/1729-4061.2016.59506
dc.relation.references[22] Semenyuk N., Kostiv U., Suberlyak O., Skorokhoda V. Peculiarities of Filled Porous Hydrogels Production and Properties. Chem. Chem. Technol. 2013, 7, 95-99. https://doi.org/10.23939/chcht07.01.095
dc.relation.references[23] Jumadilov, T. Effect of remote interraction of polymeric hydrogels in innovative technology. Ind. Kazakhstan, 2011, 2, 70-72.
dc.relation.references[24] Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.
dc.relation.references[25] Bekturov, E.; Jumadilov T. Izv. Nats. Akad. Nauk Respubliki Kazakhstan, Ser. Chem. 2010, 3, 86.
dc.relation.references[26] Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13, 451458. https://doi.org/10.23939/chcht13.04.451
dc.relation.references[27] Jumadilov, T.; Shaltykova, D.; Suleimenov, I. Anomalous Ion Exchange Phenomenon. Book of Abstracts, Austrian-Slovenian Polymer Meeting. Bled, Slovenia, Apr 3-5, 2013; p 51.
dc.relation.references[28] Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Eds.; Khimia: Moskwa, 1987.
dc.relation.referencesen[1] Mulder, M. Basic Principles of Membrane Technology; Springer: Netherlands, 1996. https://doi.org/10.1007/978-94-009-1766-8
dc.relation.referencesen[2] Khaing Z., Troshkina A., Sorp. Chromatogr. Proc., 2006, 6, 972.
dc.relation.referencesen[3] Ion Exchangers; Dorfner, K., Ed.; Walter de Gruyter: Berlin, 1991. https://doi.org/10.1515/9783110862430
dc.relation.referencesen[4] Harland, C.E. Ion Exchange: Theory and Practice, 2nd edn.; The Royal Society of Chemistry, 1994. https://doi.org/10.1039/9781847551184
dc.relation.referencesen[5] Alekseeva, S.L.; Bolotin, S.N.; Tsupko, T.G. Sorption of Cr(VI) on AV-17 and EDE-10P Anion Exchangers, KU-2 and KB-4 Cation Exchangers, Activated Charcoal, and Foamed Graphite (STRG) is Studied. J. Appl. Chem. 2007, 80, 376-378. https://doi.org/10.1134/S107042720703007X
dc.relation.referencesen[6] Ergozhin, E.; Begenova, B. Polielektrolity i Kompleksiony; Evero: Almaty, 2010.
dc.relation.referencesen[7] Ion Exchange: Highlights of Russian Science; Muraviev, D.; Gorshkov, V.; Warshawsky, A., Eds.; Marcel Dekker: New York, 2000.
dc.relation.referencesen[8] Zagorodni, A. Ion Exchange Materials: Properties and Applications, 1st ed.; Elsevier Science, 2006.
dc.relation.referencesen[9] Dzhafarov, V.D.; Alyev, N.A.; Guseinov, E.T.; Efendiev, A.A. Synthesis of Polymerizable Oligomers via Cationic Polymerization of α-Oxides. Polym. Sci. B, 2008, 50, 83-87. https://doi.org/10.1134/S156009040803010X
dc.relation.referencesen[10] Alexandratos, S.D. Ion-Exchange Resins: A Retrospective from Industrial and Engineering Chemistry Research. Ind. Eng. Chem. Res. 2009, 48, 388-398. https://doi.org/10.1021/ie801242v
dc.relation.referencesen[11] Membrane Science and Technology; Osada, Y.; Nakagawa, T., Eds.; Marcel Dekker: New York, 1992.
dc.relation.referencesen[12] Zeman, L.; Zydney, A. Microfiltration and Ultrafitration, Principles and Applications; Marcel Dekker: New York, 1996.
dc.relation.referencesen[13] Van Reis, R.; Zydney, A. Bioprocess Membrane Technology. J. Membrane Sci., 2007, 297, 16-50. https://doi.org/10.1016/j.memsci.2007.02.045
dc.relation.referencesen[14] Alimbekova, B.T.; Korganbayeva, Zh.K.; Himersen, H.J.; Kondaurov, R.G.; Jumadilov, T.K. Features of Polymethacrylic Acid and Poly-2-Methyl-5-Vinylpyridine Hydrogels Remote Interaction in an Aqueous Medium. J. Chem. Chem. Eng. 2014, 3, 265-269.
dc.relation.referencesen[15] Jumadilov, T. Mutual Activation and High Selectivity of Polymeric Structures in Intergel Systems. Abstracts of Papers, Third International Caucasian Symposium on Polymers & Advanced Materials, Tbilisi, Georgia, Sept 1-4, 2013; Iv. Javakhishvili Tbilisi State University: Tbilisi, 2013; p 43.
dc.relation.referencesen[16] Jumadilov, T. Electrochemical and Conformational Behaviour of Intergel Systems Based on the Rare Crosslinked Polyacid and Polyvynilpyrydines. Book of Abstracts, International Conference of Lithuanian Chemical Society "Chemistry and Chemical Technology", Lithuania, Kaunas, 2014; Kaunas University of Technology: Kaunas, 2014, pp 226-229.
dc.relation.referencesen[17] Jumadilov, T.; Abilov, Zh.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and poly-4-Vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459-462. https://doi.org/10.23939/chcht09.04.459
dc.relation.referencesen[18] Jumadilov T., Akimov A. Eskaliyeva G., Kondaurov R. Features of Polyvalent Metals Sorption by Intergel Systems. Book of Abstracts. VIII International Scientific-Technical Conference Advance in Petroleum and Gas Industry and Petrochemistry, Lviv, Ukraine, May 16-21, 2016; Lviv Polytechnic Publishing House: Lviv, 2016, p 68.
dc.relation.referencesen[19] Jumadilov, T.; Kondaurov, R.; Abilov, Zh.; Grazulevicius, J.V.; Akimov, A.A. Influence of Polyacrylic Acid and poly-4-Vinylpyridine Hydrogels Mutual Activation in Intergel System on their Sorption Properties in Relation to Lanthanum (III) Ions. Pol. Bul. 2017, 74, 4701-4713. https://doi.org/10.1007/s00289-017-1985-3
dc.relation.referencesen[20] Suberlyak, O.; Mel’nyk, Y.; Skorokhoda, V. Regularities of Preparation and Properties of Hydrogel Membranes. Mater. Sci. 2015, 50, 889-896. https://doi.org/10.1007/s11003-015-9798-8
dc.relation.referencesen[21] Grytsenko, O.; Suberlyak, O.; Moravskyi, V.; Gayduk, A. Investigation of Nickel Chemical Precipitation Kinetics. East-Eur. J. Enterpr. Technol. 2016, 1, 26-31. https://doi.org/10.15587/1729-4061.2016.59506
dc.relation.referencesen[22] Semenyuk N., Kostiv U., Suberlyak O., Skorokhoda V. Peculiarities of Filled Porous Hydrogels Production and Properties. Chem. Chem. Technol. 2013, 7, 95-99. https://doi.org/10.23939/chcht07.01.095
dc.relation.referencesen[23] Jumadilov, T. Effect of remote interraction of polymeric hydrogels in innovative technology. Ind. Kazakhstan, 2011, 2, 70-72.
dc.relation.referencesen[24] Bekturov, E.; Suleimenov, I. Polimernie Hydrogeli; Nauka: Moskwa, 1998.
dc.relation.referencesen[25] Bekturov, E.; Jumadilov T. Izv. Nats. Akad. Nauk Respubliki Kazakhstan, Ser. Chem. 2010, 3, 86.
dc.relation.referencesen[26] Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13, 451458. https://doi.org/10.23939/chcht13.04.451
dc.relation.referencesen[27] Jumadilov, T.; Shaltykova, D.; Suleimenov, I. Anomalous Ion Exchange Phenomenon. Book of Abstracts, Austrian-Slovenian Polymer Meeting. Bled, Slovenia, Apr 3-5, 2013; p 51.
dc.relation.referencesen[28] Praktikum po Phyziko-Khimicheskim Metodam Analiza; Petruhin, O., Eds.; Khimia: Moskwa, 1987.
dc.relation.urihttps://doi.org/10.1007/978-94-009-1766-8
dc.relation.urihttps://doi.org/10.1515/9783110862430
dc.relation.urihttps://doi.org/10.1039/9781847551184
dc.relation.urihttps://doi.org/10.1134/S107042720703007X
dc.relation.urihttps://doi.org/10.1134/S156009040803010X
dc.relation.urihttps://doi.org/10.1021/ie801242v
dc.relation.urihttps://doi.org/10.1016/j.memsci.2007.02.045
dc.relation.urihttps://doi.org/10.23939/chcht09.04.459
dc.relation.urihttps://doi.org/10.1007/s00289-017-1985-3
dc.relation.urihttps://doi.org/10.1007/s11003-015-9798-8
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.59506
dc.relation.urihttps://doi.org/10.23939/chcht07.01.095
dc.relation.urihttps://doi.org/10.23939/chcht13.04.451
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Jumadilov T., Kondaurov R., Imangazy A., Khimersen Kh., Malimbayeva Z., 2022
dc.subjectінтергельна система
dc.subjectполіакрилова кислота
dc.subjectполі-4-вінілпіридин
dc.subjectвіддалена взаємодія
dc.subjectсорбція йонів Nd3+ і Pr3+
dc.subjectintergel system
dc.subjectpolyacrylic acid
dc.subjectpoly-4-vinylpyridine
dc.subjectremote interaction
dc.subjectNd3+ and Pr3+ ions sorption
dc.titleAnomalous Sorption of Neodymium and Praseodymium Ions by Intergel System Polyacrylic Acid Hydrogel – Poly-4-Vinylpyridine Hydrogel
dc.title.alternativeАномальна сорбція йонів неодіму і празеодімію інтергеловою системою гідрогель поліакрилової кислоти - полі-4-вінілпіридин
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2022v16n1_Jumadilov_T-Anomalous_Sorption_of_Neodymium_7-14.pdf
Size:
591.14 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2022v16n1_Jumadilov_T-Anomalous_Sorption_of_Neodymium_7-14__COVER.png
Size:
545.27 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: