A hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks

dc.citation.epage1163
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1154
dc.contributor.affiliationУніверситет Абдельмалека Ессааді
dc.contributor.affiliationГоловне управління метеорології
dc.contributor.affiliationAbdelmalek Essaadi University
dc.contributor.affiliationGeneral Directorate of Meteorology
dc.contributor.authorМарракчі, Н.
dc.contributor.authorБергам, А.
dc.contributor.authorФахурі, Н.
dc.contributor.authorКенза, К.
dc.contributor.authorMarrakchi, N.
dc.contributor.authorBergam, A.
dc.contributor.authorFakhouri, H.
dc.contributor.authorKenza, K.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:54Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractОзон (O3) з тропосфери є однією з речовин, яка сильно впливає на забруднення повітря в місті Танжер. Прогнозування цього забруднювача може покращити якість повітря. У цій статті представлено новий підхід, який поєднує алгоритми глибинного навчання та метод Хольта–Вінтерса для виявлення піків забруднюючих речовин і отримання більш точної моделі прогнозування. З огляду на те, що LSTM є надзвичайно потужним алгоритмом, ми об’єднали його з методом Хольта–Вінтерса, щоб покращити модель. Використовуючи декілька показників точності, досліджено ефективність моделей. Емпіричні результати показують перевагу гібридної моделі, надаючи більш точні прогнози з індексом згоди, що дорівнює 0.91.
dc.description.abstractOzone (O3) from the troposphere is one of the substances that has a strong effect on air pollution in the city of Tanger. Prediction of this pollutant can have positive improvements in air quality. This paper presents a new approach combining deep-learning algorithms and the Holt–Winters method in order to detect pollutant peaks and obtain a more accurate forecasting model. Given that LSTM is an extremely powerful algorithm, we hybridized with the Holt–Winters method to enhance the model. Making use of multiple accuracy metrics, the models' efficiency is investigated. Empirical findings reveal the superiority of the hybrid model by providing forecasts that are more accurate with an index of agreement equal to 0.91.
dc.format.extent1154-1163
dc.format.pages10
dc.identifier.citationA hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks / N. Marrakchi, A. Bergam, H. Fakhouri, K. Kenza // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1154–1163.
dc.identifier.citationenA hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks / N. Marrakchi, A. Bergam, H. Fakhouri, K. Kenza // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1154–1163.
dc.identifier.doidoi.org/doi.org/10.23939/mmc2023.04.1154
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64067
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Samadi A., Achelhi H. Industry 4.0 in The Economic Activity Zones in Morocco: Tangier-TetouanAlhoceima Region Case. International Journal of Accounting, Finance, Auditing, Management and Economics. 2 (6-1), 327–338 (2021).
dc.relation.references[2] Zhang B., Song C., Li Y., Jiang X. Spatiotemporal prediction of O3 concentration based on the KNNProphet-LSTM model. Heliyon. 8 (11), e11670 (2022).
dc.relation.references[3] Lim C. C., Hayes R. B., Ahn J., Shao Y., Silverman D. T., Jones R. R., Garcia C., Bell M. L., Thurston G. D. Long-term exposure to ozone and cause-specific mortality risk in the united states. American Journal of Respiratory and Critical Care Medicine. 200 (8), 1022–1031 (2019).
dc.relation.references[4] Suraboyina S., Allu S. K., Anupoju G. R., Polumati A. A comparative predictive analysis of backpropagation artificial neural networks and non-linear regression models in forecasting seasonal ozone concentrations. Journal of Earth System Science. 131 (3), 189 (2022).
dc.relation.references[5] Kovaˇc-Andri´c E., Sheta A., Faris H., Gajdoˇsik M. S. Forecasting ozone concentrations in the east of Croatia ˇ using nonparametric Neural Network Models. Journal of Earth System Science. 125, 997–1006 (2016).
dc.relation.references[6] Ensafi Y., Amin S. H., Zhang G., Shah B. Time-series forecasting of seasonal items sales using machine learning–a comparative analysis. International Journal of Information Management Data Insights. 2 (1), 100058 (2022).
dc.relation.references[7] Chattopadhyay G., Chattopadhyay S. Autoregressive forecast of monthly total ozone concentration: A neurocomputing approach. Computers & Geosciences. 35 (9), 1925–1932 (2009).
dc.relation.references[8] Akbarzadeh A., Vesali Naseh M., NodeFarahani M. Carbon monoxide prediction in the atmosphere of tehran using developed support vector machine. Pollution. 6 (1), 43–57 (2020).
dc.relation.references[9] Kaur J., Parmar K. S., Singh S. Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research. 30, 19617–19641 (2023).
dc.relation.references[10] Oufdou H., Bellanger L., Bergam A., El Ghaziri A., Khomsi K., Qannari E. M., et al. Comparison of Different Regularized and Shrinkage Regression Methods to Predict Daily Tropospheric Ozone Concentration in the Grand Casablanca Area. Advances in Pure Mathematics. 8 (10), 793 (2018).
dc.relation.references[11] Hong F., Ji C., Rao J., Chen C., Sun W. Hourly ozone level prediction based on the characterization of its periodic behavior via deep learning. Process Safety and Environmental Protection. 174, 28–38 (2023).
dc.relation.references[12] Tsai C.-h., Chang L.-c., Chiang H.-c. Forecasting of ozone episode days by cost-sensitive neural network methods. Science of the Total Environment. 407 (6), 2124–2135 (2009).
dc.relation.references[13] Tamas W. W., Notton G., Paoli C., Nivet M.-L., Voyant C. Hybridization of air quality forecasting models using machine learning and clustering: An original approach to detect pollutant peaks. Aerosol and Air Quality Research. 16 (2), 405–416 (2016).
dc.relation.references[14] Belavadi S. V., Rajagopal S., Ranjani R., Mohan R. Air quality forecasting using LSTM RNN and wireless sensor networks. Procedia Computer Science. 170, 241–248 (2020).
dc.relation.references[15] Cinar Y. G., Mirisaee H., Goswami P., Gaussier E., A¨ıt-Bachir A. Period-aware content attention RNNs for time series forecasting with missing values. Neurocomputing. 312, 177–186 (2018).
dc.relation.references[16] Braik M., Sheta A., Al-Hiary H. Hybrid neural network models for forecasting ozone and particulate matter concentrations in the Republic of China. Air Quality, Atmosphere & Health. 13, 839–851 (2020).
dc.relation.references[17] Jamei M., Ali M., Malik A., Karbasi M., Sharma E., Yaseen Z. M. Air quality monitoring based on chemical and meteorological drivers: Application of a novel data filtering-based hybridized deep learning model. Journal of Cleaner Production. 374, 134011 (2022).
dc.relation.references[18] Maia A. L. S., de Carvalho F. D. A. T. Holt’s exponential smoothing and neural network models for forecasting interval-valued time series. International Journal of Forecasting. 27 (3), 740–759 (2011).
dc.relation.references[19] Dantas T. M., Oliveira F. L. C., Repolho H. M. V. Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management. 59, 116–123 (2017).
dc.relation.references[20] Dullah H., Ahmed A. N., Kumar P., Elshafie A. Integrated nonlinear autoregressive neural network and Holt Winters exponential smoothing for river streaming flow forecasting at Aswan High. Earth Science Informatics. 16 (1), 773–786 (2023).
dc.relation.references[21] Hyndman R., Koehler A. B., Ord J. K., Snyder R. D. Forecasting with Exponential Smoothing: The State Space Approach. Springer Science & Business Media (2008).
dc.relation.references[22] Programmer L. Deep Learning: Recurrent Neural Networks in Python, LSTM, GRU, and more RNN machine learning architectures in Python and Theano (Machine Learning in Python) (2016).
dc.relation.references[23] Willmott C. J., Robeson S. M., Matsuura K. A refined index of model performance. International Journal of Climatology. 32 (13), 2088–2094 (2012).
dc.relation.referencesen[1] Samadi A., Achelhi H. Industry 4.0 in The Economic Activity Zones in Morocco: Tangier-TetouanAlhoceima Region Case. International Journal of Accounting, Finance, Auditing, Management and Economics. 2 (6-1), 327–338 (2021).
dc.relation.referencesen[2] Zhang B., Song C., Li Y., Jiang X. Spatiotemporal prediction of O3 concentration based on the KNNProphet-LSTM model. Heliyon. 8 (11), e11670 (2022).
dc.relation.referencesen[3] Lim C. C., Hayes R. B., Ahn J., Shao Y., Silverman D. T., Jones R. R., Garcia C., Bell M. L., Thurston G. D. Long-term exposure to ozone and cause-specific mortality risk in the united states. American Journal of Respiratory and Critical Care Medicine. 200 (8), 1022–1031 (2019).
dc.relation.referencesen[4] Suraboyina S., Allu S. K., Anupoju G. R., Polumati A. A comparative predictive analysis of backpropagation artificial neural networks and non-linear regression models in forecasting seasonal ozone concentrations. Journal of Earth System Science. 131 (3), 189 (2022).
dc.relation.referencesen[5] Kovaˇc-Andri´c E., Sheta A., Faris H., Gajdoˇsik M. S. Forecasting ozone concentrations in the east of Croatia ˇ using nonparametric Neural Network Models. Journal of Earth System Science. 125, 997–1006 (2016).
dc.relation.referencesen[6] Ensafi Y., Amin S. H., Zhang G., Shah B. Time-series forecasting of seasonal items sales using machine learning–a comparative analysis. International Journal of Information Management Data Insights. 2 (1), 100058 (2022).
dc.relation.referencesen[7] Chattopadhyay G., Chattopadhyay S. Autoregressive forecast of monthly total ozone concentration: A neurocomputing approach. Computers & Geosciences. 35 (9), 1925–1932 (2009).
dc.relation.referencesen[8] Akbarzadeh A., Vesali Naseh M., NodeFarahani M. Carbon monoxide prediction in the atmosphere of tehran using developed support vector machine. Pollution. 6 (1), 43–57 (2020).
dc.relation.referencesen[9] Kaur J., Parmar K. S., Singh S. Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research. 30, 19617–19641 (2023).
dc.relation.referencesen[10] Oufdou H., Bellanger L., Bergam A., El Ghaziri A., Khomsi K., Qannari E. M., et al. Comparison of Different Regularized and Shrinkage Regression Methods to Predict Daily Tropospheric Ozone Concentration in the Grand Casablanca Area. Advances in Pure Mathematics. 8 (10), 793 (2018).
dc.relation.referencesen[11] Hong F., Ji C., Rao J., Chen C., Sun W. Hourly ozone level prediction based on the characterization of its periodic behavior via deep learning. Process Safety and Environmental Protection. 174, 28–38 (2023).
dc.relation.referencesen[12] Tsai C.-h., Chang L.-c., Chiang H.-c. Forecasting of ozone episode days by cost-sensitive neural network methods. Science of the Total Environment. 407 (6), 2124–2135 (2009).
dc.relation.referencesen[13] Tamas W. W., Notton G., Paoli C., Nivet M.-L., Voyant C. Hybridization of air quality forecasting models using machine learning and clustering: An original approach to detect pollutant peaks. Aerosol and Air Quality Research. 16 (2), 405–416 (2016).
dc.relation.referencesen[14] Belavadi S. V., Rajagopal S., Ranjani R., Mohan R. Air quality forecasting using LSTM RNN and wireless sensor networks. Procedia Computer Science. 170, 241–248 (2020).
dc.relation.referencesen[15] Cinar Y. G., Mirisaee H., Goswami P., Gaussier E., A¨ıt-Bachir A. Period-aware content attention RNNs for time series forecasting with missing values. Neurocomputing. 312, 177–186 (2018).
dc.relation.referencesen[16] Braik M., Sheta A., Al-Hiary H. Hybrid neural network models for forecasting ozone and particulate matter concentrations in the Republic of China. Air Quality, Atmosphere & Health. 13, 839–851 (2020).
dc.relation.referencesen[17] Jamei M., Ali M., Malik A., Karbasi M., Sharma E., Yaseen Z. M. Air quality monitoring based on chemical and meteorological drivers: Application of a novel data filtering-based hybridized deep learning model. Journal of Cleaner Production. 374, 134011 (2022).
dc.relation.referencesen[18] Maia A. L. S., de Carvalho F. D. A. T. Holt’s exponential smoothing and neural network models for forecasting interval-valued time series. International Journal of Forecasting. 27 (3), 740–759 (2011).
dc.relation.referencesen[19] Dantas T. M., Oliveira F. L. C., Repolho H. M. V. Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management. 59, 116–123 (2017).
dc.relation.referencesen[20] Dullah H., Ahmed A. N., Kumar P., Elshafie A. Integrated nonlinear autoregressive neural network and Holt Winters exponential smoothing for river streaming flow forecasting at Aswan High. Earth Science Informatics. 16 (1), 773–786 (2023).
dc.relation.referencesen[21] Hyndman R., Koehler A. B., Ord J. K., Snyder R. D. Forecasting with Exponential Smoothing: The State Space Approach. Springer Science & Business Media (2008).
dc.relation.referencesen[22] Programmer L. Deep Learning: Recurrent Neural Networks in Python, LSTM, GRU, and more RNN machine learning architectures in Python and Theano (Machine Learning in Python) (2016).
dc.relation.referencesen[23] Willmott C. J., Robeson S. M., Matsuura K. A refined index of model performance. International Journal of Climatology. 32 (13), 2088–2094 (2012).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectпрогнозування якості повітря
dc.subjectозон (O3)
dc.subjectдовга короткочасна пам’ять (LSTM)
dc.subjectметод Хольта–Вінтерса
dc.subjectрекурентна нейронна мережа (RNN)
dc.subjectштучні нейронні мережі
dc.subjectAir quality forecasting
dc.subjectOzone (O3)
dc.subjectLong Short-Term Memory (LSTM)
dc.subjectHolt–Winters method
dc.subjectRecurrent Neural Network (RNN)
dc.subjectArtificial Neural Networks
dc.titleA hybrid model for predicting air quality combining Holt–Winters and Deep Learning Approaches: A novel method to identify ozone concentration peaks
dc.title.alternativeГібридна модель для прогнозування якості повітря, що поєднує підходи Хольта–Вінтерса та глибинного навчання: новий метод визначення піків концентрації озону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Marrakchi_N-A_hybrid_model_for_1154-1163.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Marrakchi_N-A_hybrid_model_for_1154-1163__COVER.png
Size:
452.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: