Selective Removal of Mercury(II) Using Hydrogels Prepared by Gamma Radiation
dc.citation.epage | 358 | |
dc.citation.issue | 3 | |
dc.citation.spage | 345 | |
dc.contributor.affiliation | Sivas Cumhuriyet University | |
dc.contributor.affiliation | Adnan Menderes University | |
dc.contributor.author | Saraydin, Dursun | |
dc.contributor.author | Yildirim, Ebru Şahin | |
dc.contributor.author | Karadağ, Erdener | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T12:00:06Z | |
dc.date.available | 2024-01-22T12:00:06Z | |
dc.date.created | 2022-03-16 | |
dc.date.issued | 2022-03-16 | |
dc.description.abstract | Для селективного видалення ртуті(II) із використанням випромінювання синтезували гідрогелі 2-гідроксиетилметакрилат (HM) та 2-гідроксиетилметакрилат/акриламід (HM/ACR). Проведено дослідження гідрогелів в процесах набухання, дифузії та зв'язування. Встановлено, що параметри набухання для системи HM/ACR-Hg2+ є вищими, ніж для систем HM-Hg2+. Визначено, що зв'язування ртуті відноситься до C-типу для HM та L-типу для гідрогелів HM/ACR. Параметри зв'язування розраховували за допомогою моделей Фрейндліха, Ленгмюра та Генрі. Досліджено вплив концентрації Hg2+, дози випромінювання, вмісту акриламіду, температури та протийонів. Встановлено, що зв'язування та набухання HM збільшуються із включенням акриламіду. Доведено, що гідрогелі HM/ACR поглинають лише Hg2+ і не поглинають йони важких металів. | |
dc.description.abstract | To selectively remove mercury(II), 2-hydroxyethyl methacrylate (HM) and 2-hydroxyethyl methacrylate/acrylamide (HM/ACR) hydrogels were synthesized using radiation. These hydrogels were used in swelling, diffusion, and binding studies. Swelling parameters for HM/ACR−Hg2+ system are higher than those of HM−Hg2+ systems. Binding of Hg2+ has been observed to be C-type for HM and L-type for HM/ACR hydrogels. Binding parameters were calculated using Freundlich, Langmuir and Henry models. Effects of Hg2+ concentration, radiation dose, ACR ratio, temperature, counter ions were investigated. Binding and swelling of HM increased with the incorporation of acrylamide. HM/ACR hydrogels absorbed only Hg2+, and did not absorb heavy metal ions. | |
dc.format.extent | 345-358 | |
dc.format.pages | 14 | |
dc.identifier.citation | Saraydin D. Selective Removal of Mercury(II) Using Hydrogels Prepared by Gamma Radiation / Dursun Saraydin, Ebru Şahin Yildirim, Erdener Karadağ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 345–358. | |
dc.identifier.citationen | Saraydin D. Selective Removal of Mercury(II) Using Hydrogels Prepared by Gamma Radiation / Dursun Saraydin, Ebru Şahin Yildirim, Erdener Karadağ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 3. — P. 345–358. | |
dc.identifier.doi | doi.org/10.23939/chcht16.03.345 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60988 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (16), 2022 | |
dc.relation.references | [1] https://www.atsdr.cdc.gov/spl/index.html | |
dc.relation.references | [2] https://www.epa.gov/mercury/basic-information-about-mercury | |
dc.relation.references | [3] Amde, M.; Yin, Y.; Zhang, D.; Liu, J. Methods and Recent Advances in Speciation Analysis of Mercury Chemical Species in Environmental Samples: A Review. Chem. Speciat. Bioavailab. 2016, 28, 51-65. https://doi.org/10.1080/09542299.2016.1164019 | |
dc.relation.references | [4] Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury Toxicity to Terrestrial Biota. Ecol. Indic. 2017, 74, 451-462. https://doi.org/10.1016/j.ecolind.2016.12.004 | |
dc.relation.references | [5] McNutt, M. Mercury and Health. Science 2013, 341, 1430. https://doi.org/10.1126/science.1245924 | |
dc.relation.references | [6] de Almeida Rodrigues, P.; Ferrari, R.G.; dos Santos, L.N.; Conte-Junior, C.A. Mercury in Aquatic Fauna Contamination: A Systematic Review on its Dynamics and Potential Health Risks. J. Environ. Sci. 2019, 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018 | |
dc.relation.references | [7] Natasha; Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Niazi, N.K.; Dumat, C. A Critical Review of Mercury Speciation, Bioavailability, Toxicity and Detoxification in Soil-Plant Environment: Ecotoxicology and Health Risk Assessment. Sci. Total Environ. 2020, 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749 | |
dc.relation.references | [8] Yoshino, K.; Mori, K.; Kanaya, G.; Kojima, S.; Henmi, Y.; Matsuyama, A.; Yamamoto, M. Food Sources are More İmportant than Biomagnification on Mercury Bioaccumulation in Marine Fishes. Environ. Pollut. 2020, 262, 113982. https://doi.org/10.1016/j.envpol.2020.113982 | |
dc.relation.references | [9] Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic İmpact of Mercury on the Central Nervous System Evaluated by Neuropsychological Tests and on the Autonomic Nervous System Evaluated by Dynamic Pupillometry. Neurotoxicology 2017, 59, 263-269. https://doi.org/10.1016/j.neuro.2016.04.010 | |
dc.relation.references | [10] Huang, S.; Ma, C.; Liao, Y.; Min, C.; Du, P.; Jiang, Y. Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies. Nanomater. 2016, 2016, 7245829. https://doi.org/10.1155/2016/7245829 | |
dc.relation.references | [11] Saberi, A.; Sadeghi, M.; Alipour, E. Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II). J. Polym. Environ. 2020, 28, 906-917. https://doi.org/10.1007/s10924-020-01651-9 | |
dc.relation.references | [12] Jamwal, H.S.; Ranote, S.; Kumar, D.; Chauhan, G.S.; Bansal, M. Gelatin-Based Mesoporous Hybrid Materials for Hg2+ İons Removal from Aqueous Solutions. Sep. Purif. Technol. 2020, 239, 116513. https://doi.org/10.1016/j.seppur.2020.116513 | |
dc.relation.references | [13] Shalla, A.H.; Yaseen, Z.; Bhat, M.A.; Rangreez, T.A.; Maswal, M. Recent Review for Removal of Metal İons by Hydrogels. Sep. Sci. Technol. 2018, 54, 89-100. https://doi.org/10.1080/01496395.2018.1503307 | |
dc.relation.references | [14] Wang, X.; Wang, A. Adsorption Characteristics of Chitosan-g-Poly(acrylic acid)/Attapulgite Hydrogel Composite for Hg(II) Ions from Aqueous Solution. Sep. Sci. Technol. 2010, 45, 2086-2094. https://doi.org/10.1080/01496395.2010.504436 | |
dc.relation.references | [15] Khozemy, E.E.; Nasef, S.M.; Mohamed, T.M. Radiation Synthesis of Superabsorbent Hydrogel (Wheat Flour/Acrylamide) for Removal of Mercury and Lead Ions from Waste Solutions. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1669-1685. https://doi.org/10.1007/s10904-019-01350-6 | |
dc.relation.references | [16] Saraydin, D.; Yildirim, E.S.; Karadağ, E.; Güven, O. Radiation-Synthesized Acrylamide/Crotonic AcidHydrogels for Selective Mercury (II) Ion Adsorption. Adv. Polym. Technol. 2016, 37, 822. https://doi.org/10.1002/adv.21725 | |
dc.relation.references | [17] Darwis, D.; Erizal Abbas, B.; Nurlidar, F.; Putra, D. Radiation Processing of Polymers for Medical and Pharmaceutical Applications. Macromol. Symp. 2015, 353, 15-23. https://doi.org/10.1002/masy.201550302 | |
dc.relation.references | [18] Chmielewski, A.G.; Haji-Saeid, M.; Ahmed, S. Progress in Radiation Processing of Polymers. Nucl. Instrum. Methods Phys. Res. B 2005, 236, 44-54. https://doi.org/10.1016/j.nimb.2005.03.247 | |
dc.relation.references | [19] Dafader, N.C.; Adnan, M.N.; Haque, M.E.; Huq, D.; Akhtar, F. Study on the Properties of Copolymer Hydrogel Obtained from Acrylamide/2-hydroxyethyl Methacrylate by the Application of Gamma Radiation. Afr. J. Pure Appl. Chem. 2011, 5, 111-118. | |
dc.relation.references | [20] Güven, O.; Şen, M.; Karadağ, E.; Saraydin, D. A Review on the Radiation Synthesis of Copolymeric Hydrogels for Adsorption and Separation Purposes. Radiat. Phys. Chem. 1999, 56, 381-386. https://doi.org/10.1016/s0969-806x(99)00326-6 | |
dc.relation.references | [21] Öztop, H.N.; Öztop, A.Y.; Işikver, Y.; Saraydin, D. Immobilization of Saccharomyces Cerevisiae on to Radiation Crosslinked HEMA/AAm Hydrogels for Production of Ethyl Alcohol. Process Biochem. 2002, 37, 651-657. https://doi.org/10.1016/s0032-9592(01)00254-0 | |
dc.relation.references | [22] Laird, F.W.; Smith, S.A. Determination of Mercury with s –Diphenylcarbazide. Ind. Eng. Chem. Anal. Ed. 1938, 10, 576-578. https://doi.org/10.1021/ac50126a002 | |
dc.relation.references | [23] Hamdy, S.M.; El-Sigeny, S.; Abou Taleb, M.F. Immobilization of Urease on (HEMA/IA) Hydrogel Prepared by Gamma Radiation. J. Macromol. Sci. A 2008, 45, 980-987. https://doi.org/10.1080/10601320802453740 | |
dc.relation.references | [24] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-hydroxyethyl Methacrylate-co-acrylamide) Hydrogels. Polímeros 2015, 25, 547. https://doi.org/10.1590/0104-1428.2097 | |
dc.relation.references | [25] Kalaivani, S.S.; Vidhyadevi, T.; Murugesan, A.; Thiruvengadaravi, K.V.; Anuradha, D.; Sivanesan, S.; Ravikumar, L. The Use of New Modified Poly(acrylamide) Chelating Resin with Pendent Benzothiazole Groups Containing Donor Atoms in the Removal of Heavy Metal İons from Aqueous Solutions. Water Resour. Ind. 2014, 5, 21-35. https://doi.org/10.1016/j.wri.2014.04.001 | |
dc.relation.references | [26] Saraydın, D.; Işıkver, Y.; Karadağ, E. A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. J. Polym. Environ. 2018, 26, 3924-3936. https://doi.org/10.1007/s10924-018-1257-9 | |
dc.relation.references | [27] Üzüm, Ö.B.; Çetin, G.; Kundakçı, S.; Karadag, E. Swelling and Dye Adsorption Properties of Polyelectrolyte Semi-IPNs İncluding of Acrylamide/(3-Acrylamidopropyl)trimethyl Ammonium Chloride/poly(Ethylene Glycol). Sep. Sci. Technol. 2020, 55, 3307-3319. https://doi.org/10.1080/01496395.2019.1679836 | |
dc.relation.references | [28] Denizli, A.; Say, R.; Arica, M.Y. Dye Affınıty poly(2-Hydroxyethyl Methacrylate) Membranes for Removal of Heavy Metal Ions. J. Macromol. Sci. A 2000, 37, 343-356. https://doi.org/10.1081/ma-100101097 | |
dc.relation.references | [29] Türkmen, D.; Öztürk, N.; Akgöl, S.; Denizli, A. High Capacity Removal of Mercury(II) İons by poly(Hydroxyethyl Methacrylate) Nanoparticles. In Environanotechnology; Fan, M.; Huang, C-P.; Bland, A.E.; Wang, Z.; Slimane, R.; Wright, I., Eds.: Elsevier: Amsterdam, 2010; pp 23-38. https://doi.org/10.1016/B978-0-08-054820-3.00002-2 | |
dc.relation.references | [30] Sharma, R.K.; Chauhan, G.S. Synthesıs and Characterızatıon of Graft copolymers of 2-Hydroxyethyl Methacrylate and Some Comonomers onto Extracted Cellulose for Use ın Separatıon Technologıes. Bioresources 2009, 4, 986-1005. | |
dc.relation.references | [31] Sonmez, H.B.; Senkal, B.F.; Bicak, N. Poly(acrylamide) Grafts on Spherical Bead Polymers for Extremely Selective Removal of Mercuric İons from Aqueous Solutions. J. Polym. Sci. A 2002, 40, 3068-3078. https://doi.org/10.1002/pola.10392 | |
dc.relation.references | [32] Senkal, B.F.; Yavuz, E. Ureasulfonamide Polymeric Sorbent for Selective Mercury Extraction. Monatsh. Chem. 2006, 137, 929-934. https://doi.org/10.1007/s00706-006-0494-0 | |
dc.relation.references | [33] Zhang, X.; Hao, Y.; Wang, X.; Chen, Z.; Li, C. Competitive Adsorption of Cadmium(II) and Mercury(II) Ions from Aqueous Solutions by Activated Carbon from Xanthoceras sorbifolia Bunge Hull. J. Chem. 2016, 2016, 4326351. https://doi.org/10.1155/2016/4326351 | |
dc.relation.references | [34] Kumar, K.; Adhikary, P.; Tungala, K.; Sonker, E.; Krishnamoorthi, S. Heavy Metals Removal by Three Arm Star Polymer Based on 2, 4, 6-Trıs Hydroxymethyl Phenol and Polyacrylamıde. RJLBPCS 2017, 3, 45-57. https://doi.org/10.26479/2017.0301.06 | |
dc.relation.references | [35] Hayashi, T.; Mukamel, S. Two-Dimensional Vibrational Lineshapes of Amide III, II, I and A Bands in a Helical Peptide. J. Mol. Liq. 2008, 141, 149-154. https://doi.org/10.1016/j.molliq.2008.02.013 | |
dc.relation.references | [36] Molyneux, P.; Vekavakayanondha, S. The İnteraction of Aromatic Compounds with poly(Vinylpyrrolidone) in Aqueous Solution. Part 5.–Binding İsotherms for Phenols and O-substituted Phenols. J. Chem. Soc., Faraday Trans.1, 1986, 2, 291-317. https://doi.org/10.1039/f19868200291 | |
dc.relation.references | [37] Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal Sorption by Algal Biomass: From Batch to Continuous System. Algal Res. 2016, 18, 95-109. https://doi.org/10.1016/j.algal.2016.05.026 | |
dc.relation.references | [38] Ho, Y.S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. 1998, 76, 183-191. https://doi.org/10.1205/095758298529326 | |
dc.relation.references | [39] Liu, Y.; Liu, Y.-J. Biosorption İsotherms, Kinetics and Thermodynamics. Sep. Purif. Technol. 2008, 61, 229-242. https://doi.org/10.1016/j.seppur.2007.10.002 | |
dc.relation.references | [40] Okeola, O.F.; Odebunmi, E.O.; Ameen, O.M. Comparison of Sorption Capacity and Surface Area of Activated Carbon Prepared from Jatropha Curcas Fruit Pericarp and Seed Coat. Bull. Chem. Soc. Ethiopia 2012, 26, 171-180. https://doi.org/10.4314/bcse.v26i2.2 | |
dc.relation.references | [41] Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385-470. | |
dc.relation.references | [42] Jasim Al-Hayder, L.S.; Jasim Al-Juboory, M.H. Removal Study of İmidacloprid from Aqueous Solution by Adsorption onto Polyacrylamide Cross-Linked. J. Chem. Pharm. Res. 2015, 7, 1138-1144. | |
dc.relation.references | [43] Pila, A.N.; Jorge, M.J.; Romero, J.M.; Jorge, N. L.; Castro, E. A. Model Isothermal Of The Equilibrium Of The Herbicide 2,4-Dichlorophenoxyacetic Acid In Watery Phase On Soil With High Contained Organic Matter. Pinnacle Agric. Res. Manag. 2015, 3, 555-558. | |
dc.relation.references | [44] Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption İsotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755-765. https://doi.org/10.1016/0021-9797(74)90252-5 | |
dc.relation.references | [45] Langmuir, I. The Adsorptıon of Gases on Plane Surfaces of Glass, Mıca and Platınum. J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004 | |
dc.relation.references | [46] Khatoon, H.; Rai, J.P.N. Agrıcultural Waste Materıals as Bıosorbents for the Removal of Heavy Metals and Synthetıc Dyes– A Revıew. Oct. Jour. Env. Res. 2016, 4, 208-229. | |
dc.relation.references | [47] García, E.R.; Medina, R.L.; Lozano, M.M.; Hernández Pérez, I.; Valero, M.J.; Franco, A.M.M.Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate. Materials 2014, 7, 8037-8057. https://doi.org/10.3390/ma7128037 | |
dc.relation.references | [48] Zhou, X.; Zhou, X. The Unıt Problem ın the Thermodynamıc Calculatıon of Adsorptıon Usıng The Langmuır Equatıon. Chem. Eng. Commun. 2014, 201, 1459-1467. https://doi.org/10.1080/00986445.2013.818541 | |
dc.relation.references | [49] Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van't Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.relation.referencesen | [1] https://www.atsdr.cdc.gov/spl/index.html | |
dc.relation.referencesen | [2] https://www.epa.gov/mercury/basic-information-about-mercury | |
dc.relation.referencesen | [3] Amde, M.; Yin, Y.; Zhang, D.; Liu, J. Methods and Recent Advances in Speciation Analysis of Mercury Chemical Species in Environmental Samples: A Review. Chem. Speciat. Bioavailab. 2016, 28, 51-65. https://doi.org/10.1080/09542299.2016.1164019 | |
dc.relation.referencesen | [4] Mahbub, K.R.; Krishnan, K.; Naidu, R.; Andrews, S.; Megharaj, M. Mercury Toxicity to Terrestrial Biota. Ecol. Indic. 2017, 74, 451-462. https://doi.org/10.1016/j.ecolind.2016.12.004 | |
dc.relation.referencesen | [5] McNutt, M. Mercury and Health. Science 2013, 341, 1430. https://doi.org/10.1126/science.1245924 | |
dc.relation.referencesen | [6] de Almeida Rodrigues, P.; Ferrari, R.G.; dos Santos, L.N.; Conte-Junior, C.A. Mercury in Aquatic Fauna Contamination: A Systematic Review on its Dynamics and Potential Health Risks. J. Environ. Sci. 2019, 84, 205-218. https://doi.org/10.1016/j.jes.2019.02.018 | |
dc.relation.referencesen | [7] Natasha; Shahid, M.; Khalid, S.; Bibi, I.; Bundschuh, J.; Niazi, N.K.; Dumat, C. A Critical Review of Mercury Speciation, Bioavailability, Toxicity and Detoxification in Soil-Plant Environment: Ecotoxicology and Health Risk Assessment. Sci. Total Environ. 2020, 711, 134749. https://doi.org/10.1016/j.scitotenv.2019.134749 | |
dc.relation.referencesen | [8] Yoshino, K.; Mori, K.; Kanaya, G.; Kojima, S.; Henmi, Y.; Matsuyama, A.; Yamamoto, M. Food Sources are More İmportant than Biomagnification on Mercury Bioaccumulation in Marine Fishes. Environ. Pollut. 2020, 262, 113982. https://doi.org/10.1016/j.envpol.2020.113982 | |
dc.relation.referencesen | [9] Milioni, A.L.V.; Nagy, B.V.; Moura, A.L.; Zachi, E.C.; Barboni, M.T.S.; Ventura, D.F. Neurotoxic İmpact of Mercury on the Central Nervous System Evaluated by Neuropsychological Tests and on the Autonomic Nervous System Evaluated by Dynamic Pupillometry. Neurotoxicology 2017, 59, 263-269. https://doi.org/10.1016/j.neuro.2016.04.010 | |
dc.relation.referencesen | [10] Huang, S.; Ma, C.; Liao, Y.; Min, C.; Du, P.; Jiang, Y. Removal of Mercury(II) from Aqueous Solutions by Adsorption on Poly(1-amino-5-chloroanthraquinone) Nanofibrils: Equilibrium, Kinetics, and Mechanism Studies. Nanomater. 2016, 2016, 7245829. https://doi.org/10.1155/2016/7245829 | |
dc.relation.referencesen | [11] Saberi, A.; Sadeghi, M.; Alipour, E. Design of AgNPs -Base Starch/PEG-Poly (Acrylic Acid) Hydrogel for Removal of Mercury (II). J. Polym. Environ. 2020, 28, 906-917. https://doi.org/10.1007/s10924-020-01651-9 | |
dc.relation.referencesen | [12] Jamwal, H.S.; Ranote, S.; Kumar, D.; Chauhan, G.S.; Bansal, M. Gelatin-Based Mesoporous Hybrid Materials for Hg2+ İons Removal from Aqueous Solutions. Sep. Purif. Technol. 2020, 239, 116513. https://doi.org/10.1016/j.seppur.2020.116513 | |
dc.relation.referencesen | [13] Shalla, A.H.; Yaseen, Z.; Bhat, M.A.; Rangreez, T.A.; Maswal, M. Recent Review for Removal of Metal İons by Hydrogels. Sep. Sci. Technol. 2018, 54, 89-100. https://doi.org/10.1080/01496395.2018.1503307 | |
dc.relation.referencesen | [14] Wang, X.; Wang, A. Adsorption Characteristics of Chitosan-g-Poly(acrylic acid)/Attapulgite Hydrogel Composite for Hg(II) Ions from Aqueous Solution. Sep. Sci. Technol. 2010, 45, 2086-2094. https://doi.org/10.1080/01496395.2010.504436 | |
dc.relation.referencesen | [15] Khozemy, E.E.; Nasef, S.M.; Mohamed, T.M. Radiation Synthesis of Superabsorbent Hydrogel (Wheat Flour/Acrylamide) for Removal of Mercury and Lead Ions from Waste Solutions. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1669-1685. https://doi.org/10.1007/s10904-019-01350-6 | |
dc.relation.referencesen | [16] Saraydin, D.; Yildirim, E.S.; Karadağ, E.; Güven, O. Radiation-Synthesized Acrylamide/Crotonic AcidHydrogels for Selective Mercury (II) Ion Adsorption. Adv. Polym. Technol. 2016, 37, 822. https://doi.org/10.1002/adv.21725 | |
dc.relation.referencesen | [17] Darwis, D.; Erizal Abbas, B.; Nurlidar, F.; Putra, D. Radiation Processing of Polymers for Medical and Pharmaceutical Applications. Macromol. Symp. 2015, 353, 15-23. https://doi.org/10.1002/masy.201550302 | |
dc.relation.referencesen | [18] Chmielewski, A.G.; Haji-Saeid, M.; Ahmed, S. Progress in Radiation Processing of Polymers. Nucl. Instrum. Methods Phys. Res. B 2005, 236, 44-54. https://doi.org/10.1016/j.nimb.2005.03.247 | |
dc.relation.referencesen | [19] Dafader, N.C.; Adnan, M.N.; Haque, M.E.; Huq, D.; Akhtar, F. Study on the Properties of Copolymer Hydrogel Obtained from Acrylamide/2-hydroxyethyl Methacrylate by the Application of Gamma Radiation. Afr. J. Pure Appl. Chem. 2011, 5, 111-118. | |
dc.relation.referencesen | [20] Güven, O.; Şen, M.; Karadağ, E.; Saraydin, D. A Review on the Radiation Synthesis of Copolymeric Hydrogels for Adsorption and Separation Purposes. Radiat. Phys. Chem. 1999, 56, 381-386. https://doi.org/10.1016/s0969-806x(99)00326-6 | |
dc.relation.referencesen | [21] Öztop, H.N.; Öztop, A.Y.; Işikver, Y.; Saraydin, D. Immobilization of Saccharomyces Cerevisiae on to Radiation Crosslinked HEMA/AAm Hydrogels for Production of Ethyl Alcohol. Process Biochem. 2002, 37, 651-657. https://doi.org/10.1016/s0032-9592(01)00254-0 | |
dc.relation.referencesen | [22] Laird, F.W.; Smith, S.A. Determination of Mercury with s –Diphenylcarbazide. Ind. Eng. Chem. Anal. Ed. 1938, 10, 576-578. https://doi.org/10.1021/ac50126a002 | |
dc.relation.referencesen | [23] Hamdy, S.M.; El-Sigeny, S.; Abou Taleb, M.F. Immobilization of Urease on (HEMA/IA) Hydrogel Prepared by Gamma Radiation. J. Macromol. Sci. A 2008, 45, 980-987. https://doi.org/10.1080/10601320802453740 | |
dc.relation.referencesen | [24] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-hydroxyethyl Methacrylate-co-acrylamide) Hydrogels. Polímeros 2015, 25, 547. https://doi.org/10.1590/0104-1428.2097 | |
dc.relation.referencesen | [25] Kalaivani, S.S.; Vidhyadevi, T.; Murugesan, A.; Thiruvengadaravi, K.V.; Anuradha, D.; Sivanesan, S.; Ravikumar, L. The Use of New Modified Poly(acrylamide) Chelating Resin with Pendent Benzothiazole Groups Containing Donor Atoms in the Removal of Heavy Metal İons from Aqueous Solutions. Water Resour. Ind. 2014, 5, 21-35. https://doi.org/10.1016/j.wri.2014.04.001 | |
dc.relation.referencesen | [26] Saraydın, D.; Işıkver, Y.; Karadağ, E. A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. J. Polym. Environ. 2018, 26, 3924-3936. https://doi.org/10.1007/s10924-018-1257-9 | |
dc.relation.referencesen | [27] Üzüm, Ö.B.; Çetin, G.; Kundakçı, S.; Karadag, E. Swelling and Dye Adsorption Properties of Polyelectrolyte Semi-IPNs İncluding of Acrylamide/(3-Acrylamidopropyl)trimethyl Ammonium Chloride/poly(Ethylene Glycol). Sep. Sci. Technol. 2020, 55, 3307-3319. https://doi.org/10.1080/01496395.2019.1679836 | |
dc.relation.referencesen | [28] Denizli, A.; Say, R.; Arica, M.Y. Dye Affınıty poly(2-Hydroxyethyl Methacrylate) Membranes for Removal of Heavy Metal Ions. J. Macromol. Sci. A 2000, 37, 343-356. https://doi.org/10.1081/ma-100101097 | |
dc.relation.referencesen | [29] Türkmen, D.; Öztürk, N.; Akgöl, S.; Denizli, A. High Capacity Removal of Mercury(II) İons by poly(Hydroxyethyl Methacrylate) Nanoparticles. In Environanotechnology; Fan, M.; Huang, C-P.; Bland, A.E.; Wang, Z.; Slimane, R.; Wright, I., Eds., Elsevier: Amsterdam, 2010; pp 23-38. https://doi.org/10.1016/B978-0-08-054820-3.00002-2 | |
dc.relation.referencesen | [30] Sharma, R.K.; Chauhan, G.S. Synthesıs and Characterızatıon of Graft copolymers of 2-Hydroxyethyl Methacrylate and Some Comonomers onto Extracted Cellulose for Use ın Separatıon Technologıes. Bioresources 2009, 4, 986-1005. | |
dc.relation.referencesen | [31] Sonmez, H.B.; Senkal, B.F.; Bicak, N. Poly(acrylamide) Grafts on Spherical Bead Polymers for Extremely Selective Removal of Mercuric İons from Aqueous Solutions. J. Polym. Sci. A 2002, 40, 3068-3078. https://doi.org/10.1002/pola.10392 | |
dc.relation.referencesen | [32] Senkal, B.F.; Yavuz, E. Ureasulfonamide Polymeric Sorbent for Selective Mercury Extraction. Monatsh. Chem. 2006, 137, 929-934. https://doi.org/10.1007/s00706-006-0494-0 | |
dc.relation.referencesen | [33] Zhang, X.; Hao, Y.; Wang, X.; Chen, Z.; Li, C. Competitive Adsorption of Cadmium(II) and Mercury(II) Ions from Aqueous Solutions by Activated Carbon from Xanthoceras sorbifolia Bunge Hull. J. Chem. 2016, 2016, 4326351. https://doi.org/10.1155/2016/4326351 | |
dc.relation.referencesen | [34] Kumar, K.; Adhikary, P.; Tungala, K.; Sonker, E.; Krishnamoorthi, S. Heavy Metals Removal by Three Arm Star Polymer Based on 2, 4, 6-Trıs Hydroxymethyl Phenol and Polyacrylamıde. RJLBPCS 2017, 3, 45-57. https://doi.org/10.26479/2017.0301.06 | |
dc.relation.referencesen | [35] Hayashi, T.; Mukamel, S. Two-Dimensional Vibrational Lineshapes of Amide III, II, I and A Bands in a Helical Peptide. J. Mol. Liq. 2008, 141, 149-154. https://doi.org/10.1016/j.molliq.2008.02.013 | |
dc.relation.referencesen | [36] Molyneux, P.; Vekavakayanondha, S. The İnteraction of Aromatic Compounds with poly(Vinylpyrrolidone) in Aqueous Solution. Part 5.–Binding İsotherms for Phenols and O-substituted Phenols. J. Chem. Soc., Faraday Trans.1, 1986, 2, 291-317. https://doi.org/10.1039/f19868200291 | |
dc.relation.referencesen | [37] Kumar, D.; Pandey, L.K.; Gaur, J.P. Metal Sorption by Algal Biomass: From Batch to Continuous System. Algal Res. 2016, 18, 95-109. https://doi.org/10.1016/j.algal.2016.05.026 | |
dc.relation.referencesen | [38] Ho, Y.S.; Mckay, G. Kinetic Models for the Sorption of Dye from Aqueous Solution by Wood. Process Saf. Environ. 1998, 76, 183-191. https://doi.org/10.1205/095758298529326 | |
dc.relation.referencesen | [39] Liu, Y.; Liu, Y.-J. Biosorption İsotherms, Kinetics and Thermodynamics. Sep. Purif. Technol. 2008, 61, 229-242. https://doi.org/10.1016/j.seppur.2007.10.002 | |
dc.relation.referencesen | [40] Okeola, O.F.; Odebunmi, E.O.; Ameen, O.M. Comparison of Sorption Capacity and Surface Area of Activated Carbon Prepared from Jatropha Curcas Fruit Pericarp and Seed Coat. Bull. Chem. Soc. Ethiopia 2012, 26, 171-180. https://doi.org/10.4314/bcse.v26i2.2 | |
dc.relation.referencesen | [41] Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385-470. | |
dc.relation.referencesen | [42] Jasim Al-Hayder, L.S.; Jasim Al-Juboory, M.H. Removal Study of İmidacloprid from Aqueous Solution by Adsorption onto Polyacrylamide Cross-Linked. J. Chem. Pharm. Res. 2015, 7, 1138-1144. | |
dc.relation.referencesen | [43] Pila, A.N.; Jorge, M.J.; Romero, J.M.; Jorge, N. L.; Castro, E. A. Model Isothermal Of The Equilibrium Of The Herbicide 2,4-Dichlorophenoxyacetic Acid In Watery Phase On Soil With High Contained Organic Matter. Pinnacle Agric. Res. Manag. 2015, 3, 555-558. | |
dc.relation.referencesen | [44] Giles, C.H.; Smith, D.; Huitson, A. A General Treatment and Classification of the Solute Adsorption İsotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755-765. https://doi.org/10.1016/0021-9797(74)90252-5 | |
dc.relation.referencesen | [45] Langmuir, I. The Adsorptıon of Gases on Plane Surfaces of Glass, Mıca and Platınum. J. Am. Chem. Soc., 1918, 40, 1361-1403. https://doi.org/10.1021/ja02242a004 | |
dc.relation.referencesen | [46] Khatoon, H.; Rai, J.P.N. Agrıcultural Waste Materıals as Bıosorbents for the Removal of Heavy Metals and Synthetıc Dyes– A Revıew. Oct. Jour. Env. Res. 2016, 4, 208-229. | |
dc.relation.referencesen | [47] García, E.R.; Medina, R.L.; Lozano, M.M.; Hernández Pérez, I.; Valero, M.J.; Franco, A.M.M.Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate. Materials 2014, 7, 8037-8057. https://doi.org/10.3390/ma7128037 | |
dc.relation.referencesen | [48] Zhou, X.; Zhou, X. The Unıt Problem ın the Thermodynamıc Calculatıon of Adsorptıon Usıng The Langmuır Equatıon. Chem. Eng. Commun. 2014, 201, 1459-1467. https://doi.org/10.1080/00986445.2013.818541 | |
dc.relation.referencesen | [49] Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J.C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van't Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.relation.uri | https://www.atsdr.cdc.gov/spl/index.html | |
dc.relation.uri | https://www.epa.gov/mercury/basic-information-about-mercury | |
dc.relation.uri | https://doi.org/10.1080/09542299.2016.1164019 | |
dc.relation.uri | https://doi.org/10.1016/j.ecolind.2016.12.004 | |
dc.relation.uri | https://doi.org/10.1126/science.1245924 | |
dc.relation.uri | https://doi.org/10.1016/j.jes.2019.02.018 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2019.134749 | |
dc.relation.uri | https://doi.org/10.1016/j.envpol.2020.113982 | |
dc.relation.uri | https://doi.org/10.1016/j.neuro.2016.04.010 | |
dc.relation.uri | https://doi.org/10.1155/2016/7245829 | |
dc.relation.uri | https://doi.org/10.1007/s10924-020-01651-9 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2020.116513 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2018.1503307 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2010.504436 | |
dc.relation.uri | https://doi.org/10.1007/s10904-019-01350-6 | |
dc.relation.uri | https://doi.org/10.1002/adv.21725 | |
dc.relation.uri | https://doi.org/10.1002/masy.201550302 | |
dc.relation.uri | https://doi.org/10.1016/j.nimb.2005.03.247 | |
dc.relation.uri | https://doi.org/10.1016/s0969-806x(99)00326-6 | |
dc.relation.uri | https://doi.org/10.1016/s0032-9592(01)00254-0 | |
dc.relation.uri | https://doi.org/10.1021/ac50126a002 | |
dc.relation.uri | https://doi.org/10.1080/10601320802453740 | |
dc.relation.uri | https://doi.org/10.1590/0104-1428.2097 | |
dc.relation.uri | https://doi.org/10.1016/j.wri.2014.04.001 | |
dc.relation.uri | https://doi.org/10.1007/s10924-018-1257-9 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2019.1679836 | |
dc.relation.uri | https://doi.org/10.1081/ma-100101097 | |
dc.relation.uri | https://doi.org/10.1016/B978-0-08-054820-3.00002-2 | |
dc.relation.uri | https://doi.org/10.1002/pola.10392 | |
dc.relation.uri | https://doi.org/10.1007/s00706-006-0494-0 | |
dc.relation.uri | https://doi.org/10.1155/2016/4326351 | |
dc.relation.uri | https://doi.org/10.26479/2017.0301.06 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2008.02.013 | |
dc.relation.uri | https://doi.org/10.1039/f19868200291 | |
dc.relation.uri | https://doi.org/10.1016/j.algal.2016.05.026 | |
dc.relation.uri | https://doi.org/10.1205/095758298529326 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2007.10.002 | |
dc.relation.uri | https://doi.org/10.4314/bcse.v26i2.2 | |
dc.relation.uri | https://doi.org/10.1016/0021-9797(74)90252-5 | |
dc.relation.uri | https://doi.org/10.1021/ja02242a004 | |
dc.relation.uri | https://doi.org/10.3390/ma7128037 | |
dc.relation.uri | https://doi.org/10.1080/00986445.2013.818541 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2018.10.048 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.rights.holder | © Saraydin D., Şahin Yildirim E.; Karadağ E., 2022 | |
dc.subject | ртуть | |
dc.subject | 2-гідроксиетилметакрилат | |
dc.subject | акриламід | |
dc.subject | гідрогель | |
dc.subject | випромінювання | |
dc.subject | адсорбція | |
dc.subject | mercury | |
dc.subject | 2-hydroxyethyl methacrylate | |
dc.subject | acrylamide | |
dc.subject | hydrogel | |
dc.subject | radiation | |
dc.subject | adsorption | |
dc.title | Selective Removal of Mercury(II) Using Hydrogels Prepared by Gamma Radiation | |
dc.title.alternative | Селективне видалення ртуті(ІІ) з використанням гідрогелів, приготовлених за допомогою гамма-випромінювання | |
dc.type | Article |
Files
License bundle
1 - 1 of 1