Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes

dc.citation.epage243
dc.citation.issue2
dc.citation.spage237
dc.contributor.affiliationNational Technical University "Kharkiv Polytechnic Institute"
dc.contributor.affiliationO. M. Beketov National University of Urban Economy in Kharkiv
dc.contributor.authorSmirnova, Olha
dc.contributor.authorRudachenko, Nataliia
dc.contributor.authorPylypenko, Oleksij
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:36Z
dc.date.available2024-02-12T08:30:36Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractДосліджено кінетику катодних реакцій, що відбуваються на золотому електроді в кислих тіосечовино-цитратних електролітах. За допомогою класичних електрохімічних методів (потенціометрія, хроновольт амперометрія, електрогравіметрія) та графоаналітичних розрахунків встановлено константу нестійкості комплексів золота, вид кінетики, природу уповільненої стадії й основні кінетичні характеристики електрохімічної реакції під час осадження золота.
dc.description.abstractThe kinetics of cathode reactions occurring on a gold electrode in acidic thiourea-citrate electrolytes has been studied. Using classical electrochemical methods (potentiometry, chronovoltammetry, electrogravimetry) and graphic-analytical calculations, the following were established: the instability constant of gold complexes, the type of kinetics, the nature of the delayed stage, and the main kinetic characteristics of the electrochemical reaction during gold deposition.
dc.format.extent237-243
dc.format.pages7
dc.identifier.citationSmirnova O. Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes / Olha Smirnova, Nataliia Rudachenko, Oleksij Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 237–243.
dc.identifier.citationenSmirnova O. Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes / Olha Smirnova, Nataliia Rudachenko, Oleksij Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 237–243.
dc.identifier.doidoi.org/10.23939/chcht17.02.237
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61244
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Green, Т.А. Gold Electrodeposition for Microelectronic, Optoe-lectronic and Microsystem Applications. Gold Bull. 2007, 40, 105-114. https://doi.org/10.1007/BF03215566
dc.relation.references[2] Satpathy, B.; Jena, S.; Das, S.; Das, K. A comprehensive Review of Various Non-Cyanide Electroplating Baths for the Production of Silver and Gold Coatings. Int. Mat. Rev. 2022, 67, 1-37. https://doi.org/10.1080/09506608.2022.2156723
dc.relation.references[3] Tang, H.; Chen, Ch.; Chang, M.; Nagoshi, T.; Yamane, D.; Konishi, T.; Machida, K.; Masu, K.; Sone, M. Au–Cu Alloys Prepared by Pulse Electrodeposition toward Applications as Movable Micro-Components in Electronic Devices. J. Electrochem. Soc. 2018, 165, 58-63. https://doi.org/10.1149/2.0441802
dc.relation.references[4] Weisberg, A.M. Gold Plating. Met. Finish. 2000, 98, 248-261. https://doi.org/10.1016/S0026-0576(00)80331-1
dc.relation.references[5] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz kobalʹto-khromovoho splavu. UA 70525 А, October 2004.
dc.relation.references[6] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz nikel-khromovoho splavu. UA 15313, January 2006.
dc.relation.references[7] Nikonov, A.Yu.; Breslavets, N.M.; Smirnova, O.L.; Musienko, V.G.; Zhitomirskiy, A.O. Prospects for Victorian Preparations Based on Gold Nanoparticles in the Rehabilitation of Dental Patients. Oral and General Health 2021, 2, 33-36.
dc.relation.references[8] Walton, T. Characterisation of Electroplated Gold Coatings for Dental Applications: Estimation of Thickness Using Non-Destructive Electron-Probe Microanalysis Related to Plating Time. Coatings 2021, 11, 874. https://doi.org/10.3390/coatings11080874
dc.relation.references[9] Smirnova, O.; Bairachnyi, B.; Nikonov, A. Elektrolit zolotinnya. UA 31325, April 2008.
dc.relation.references[10] Smirnova, O.; Nikonov, A. Elektrolit osadzhennya pokryttiv splavom zoloto-midʹ. UA 27609, November 2007.
dc.relation.references[11] Kato, M.; Okinaka, Y. Some Recent Developments in Non-Cyanide Gold Plating for Electronics Applications. Gold Bull. 2004, 37, 37-44. https://doi.org/10.1007/BF03215515
dc.relation.references[12] Zheng, L.; Yuan, X. An Investigation on the Performance of Gold Layer Based Cyanide-Free HAuCl4 Electroplating Process under Different Power Conditions. Mat. Today Comm. 2022, 31, 103711. https://doi.org/10.1016/j.mtcomm.2022.103711
dc.relation.references[13] Kubra, A.; Servet T. A Study on Gold-Silver Alloy Electrode-position from Pyrophosphate-Cyanide Electrolyte Using Polyethy-lenimine-KSeCN Additives. Int. J. Electrochem. Sci. 2018, 13, 3855-3873. https://doi.org/10.20964/2018.04.07
dc.relation.references[14] Ozcelik, T.; Yilmaz, B. Galvanic Gold Plating for Fixed Dental Prostheses. Eur. J. Dent. 2013, 7, 373-376. https://doi.org/10.4103/1305-7456.115426
dc.relation.references[15] Smirnova, O.; Brovin, A.; Pilipenko, A; Zhelavska, Yu. Studying the Kinetics of Electrode Reactions on Copper, Silver and Gold in Acid Thiourea-Citrate Electrolytes. Materials Today: Proceedings 2019, 6, 141-149. https://doi.org/10.1016/j.matpr.2018.10.087
dc.relation.references[16] Smirnova, O.; Yusov, Y.; Shytov, V. Elektrolitychne Osadzhennya Sribnykh i Zolotykh Pokrytʹ iz Kompleksnykh Elektrolitiv na Osnovi Orhanichnykh Lihandiv. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut» 2017, 49, 72-78.
dc.relation.references[17] Garcia-Hernandez, F.; Oskam, A.H.; Castano, V.M. Design and Construction of an Innovative Device for Corrosion Testing of Materials in Different Environments. Chem. Chem. Technol. 2009, 3, 301-303. https://doi.org/10.23939/chcht03.04.301
dc.relation.references[18] Sakhnenko, M.D.; Artemenko, V.M. Kinetyka elektrodnykh protsesiv; NTU «KhPI»: Kharkiv, 2014.
dc.relation.references[19] Smirnova, O.; Pilipenko, A.; Pancheva, H.; Zhelavskyi, A.; Rutkovska, K. Study of Anode Processes During Development of the New Complex Thiocarbamide-Citrate Copper Plating Electrolyte. EasternEuropean J. Enterp. Technol. 2018, 1, 47-51. https://doi.org/10.15587/1729-4061.2018.123852
dc.relation.references[20] Smirnova, O.; Nikonov, A.; Pilipenko, A.; Brovin, A. Thiocarbamide-Citrate Electrolytes as an Alternative to Cyanide Electrolytes in Solving the Problems of Environmental Protection and Prevention of Emergency Situations. Materials Science Forum 2021, 1038, 185-192. https://doi.org/10.4028/www.scientific.net/MSF.1038.185
dc.relation.referencesen[1] Green, T.A. Gold Electrodeposition for Microelectronic, Optoe-lectronic and Microsystem Applications. Gold Bull. 2007, 40, 105-114. https://doi.org/10.1007/BF03215566
dc.relation.referencesen[2] Satpathy, B.; Jena, S.; Das, S.; Das, K. A comprehensive Review of Various Non-Cyanide Electroplating Baths for the Production of Silver and Gold Coatings. Int. Mat. Rev. 2022, 67, 1-37. https://doi.org/10.1080/09506608.2022.2156723
dc.relation.referencesen[3] Tang, H.; Chen, Ch.; Chang, M.; Nagoshi, T.; Yamane, D.; Konishi, T.; Machida, K.; Masu, K.; Sone, M. Au–Cu Alloys Prepared by Pulse Electrodeposition toward Applications as Movable Micro-Components in Electronic Devices. J. Electrochem. Soc. 2018, 165, 58-63. https://doi.org/10.1149/2.0441802
dc.relation.referencesen[4] Weisberg, A.M. Gold Plating. Met. Finish. 2000, 98, 248-261. https://doi.org/10.1016/S0026-0576(00)80331-1
dc.relation.referencesen[5] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz kobalʹto-khromovoho splavu. UA 70525 A, October 2004.
dc.relation.referencesen[6] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz nikel-khromovoho splavu. UA 15313, January 2006.
dc.relation.referencesen[7] Nikonov, A.Yu.; Breslavets, N.M.; Smirnova, O.L.; Musienko, V.G.; Zhitomirskiy, A.O. Prospects for Victorian Preparations Based on Gold Nanoparticles in the Rehabilitation of Dental Patients. Oral and General Health 2021, 2, 33-36.
dc.relation.referencesen[8] Walton, T. Characterisation of Electroplated Gold Coatings for Dental Applications: Estimation of Thickness Using Non-Destructive Electron-Probe Microanalysis Related to Plating Time. Coatings 2021, 11, 874. https://doi.org/10.3390/coatings11080874
dc.relation.referencesen[9] Smirnova, O.; Bairachnyi, B.; Nikonov, A. Elektrolit zolotinnya. UA 31325, April 2008.
dc.relation.referencesen[10] Smirnova, O.; Nikonov, A. Elektrolit osadzhennya pokryttiv splavom zoloto-midʹ. UA 27609, November 2007.
dc.relation.referencesen[11] Kato, M.; Okinaka, Y. Some Recent Developments in Non-Cyanide Gold Plating for Electronics Applications. Gold Bull. 2004, 37, 37-44. https://doi.org/10.1007/BF03215515
dc.relation.referencesen[12] Zheng, L.; Yuan, X. An Investigation on the Performance of Gold Layer Based Cyanide-Free HAuCl4 Electroplating Process under Different Power Conditions. Mat. Today Comm. 2022, 31, 103711. https://doi.org/10.1016/j.mtcomm.2022.103711
dc.relation.referencesen[13] Kubra, A.; Servet T. A Study on Gold-Silver Alloy Electrode-position from Pyrophosphate-Cyanide Electrolyte Using Polyethy-lenimine-KSeCN Additives. Int. J. Electrochem. Sci. 2018, 13, 3855-3873. https://doi.org/10.20964/2018.04.07
dc.relation.referencesen[14] Ozcelik, T.; Yilmaz, B. Galvanic Gold Plating for Fixed Dental Prostheses. Eur. J. Dent. 2013, 7, 373-376. https://doi.org/10.4103/1305-7456.115426
dc.relation.referencesen[15] Smirnova, O.; Brovin, A.; Pilipenko, A; Zhelavska, Yu. Studying the Kinetics of Electrode Reactions on Copper, Silver and Gold in Acid Thiourea-Citrate Electrolytes. Materials Today: Proceedings 2019, 6, 141-149. https://doi.org/10.1016/j.matpr.2018.10.087
dc.relation.referencesen[16] Smirnova, O.; Yusov, Y.; Shytov, V. Elektrolitychne Osadzhennya Sribnykh i Zolotykh Pokrytʹ iz Kompleksnykh Elektrolitiv na Osnovi Orhanichnykh Lihandiv. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" 2017, 49, 72-78.
dc.relation.referencesen[17] Garcia-Hernandez, F.; Oskam, A.H.; Castano, V.M. Design and Construction of an Innovative Device for Corrosion Testing of Materials in Different Environments. Chem. Chem. Technol. 2009, 3, 301-303. https://doi.org/10.23939/chcht03.04.301
dc.relation.referencesen[18] Sakhnenko, M.D.; Artemenko, V.M. Kinetyka elektrodnykh protsesiv; NTU "KhPI": Kharkiv, 2014.
dc.relation.referencesen[19] Smirnova, O.; Pilipenko, A.; Pancheva, H.; Zhelavskyi, A.; Rutkovska, K. Study of Anode Processes During Development of the New Complex Thiocarbamide-Citrate Copper Plating Electrolyte. EasternEuropean J. Enterp. Technol. 2018, 1, 47-51. https://doi.org/10.15587/1729-4061.2018.123852
dc.relation.referencesen[20] Smirnova, O.; Nikonov, A.; Pilipenko, A.; Brovin, A. Thiocarbamide-Citrate Electrolytes as an Alternative to Cyanide Electrolytes in Solving the Problems of Environmental Protection and Prevention of Emergency Situations. Materials Science Forum 2021, 1038, 185-192. https://doi.org/10.4028/www.scientific.net/MSF.1038.185
dc.relation.urihttps://doi.org/10.1007/BF03215566
dc.relation.urihttps://doi.org/10.1080/09506608.2022.2156723
dc.relation.urihttps://doi.org/10.1149/2.0441802
dc.relation.urihttps://doi.org/10.1016/S0026-0576(00)80331-1
dc.relation.urihttps://doi.org/10.3390/coatings11080874
dc.relation.urihttps://doi.org/10.1007/BF03215515
dc.relation.urihttps://doi.org/10.1016/j.mtcomm.2022.103711
dc.relation.urihttps://doi.org/10.20964/2018.04.07
dc.relation.urihttps://doi.org/10.4103/1305-7456.115426
dc.relation.urihttps://doi.org/10.1016/j.matpr.2018.10.087
dc.relation.urihttps://doi.org/10.23939/chcht03.04.301
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.123852
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.1038.185
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Smirnova O., Rudachenko N., Pylypenko O., 2023
dc.subjectкомплекс золота (I)
dc.subjectтіосечовина
dc.subjectцитратна кислота
dc.subjectкатодна поляризація
dc.subjectелектролітичне осадження
dc.subjectgold (I) complex
dc.subjectthiourea
dc.subjectcitric acid
dc.subjectcathode polarization
dc.subjectelectrolytic deposition
dc.titleGold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes
dc.title.alternativeКінетика катодних реакцій відновлення золота в кислих тіосечовинних електролітах
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Smirnova_O-Gold_Reducing_Cathode_237-243.pdf
Size:
456.28 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Smirnova_O-Gold_Reducing_Cathode_237-243__COVER.png
Size:
561.84 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: