Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes
dc.citation.epage | 243 | |
dc.citation.issue | 2 | |
dc.citation.spage | 237 | |
dc.contributor.affiliation | National Technical University "Kharkiv Polytechnic Institute" | |
dc.contributor.affiliation | O. M. Beketov National University of Urban Economy in Kharkiv | |
dc.contributor.author | Smirnova, Olha | |
dc.contributor.author | Rudachenko, Nataliia | |
dc.contributor.author | Pylypenko, Oleksij | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:36Z | |
dc.date.available | 2024-02-12T08:30:36Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Досліджено кінетику катодних реакцій, що відбуваються на золотому електроді в кислих тіосечовино-цитратних електролітах. За допомогою класичних електрохімічних методів (потенціометрія, хроновольт амперометрія, електрогравіметрія) та графоаналітичних розрахунків встановлено константу нестійкості комплексів золота, вид кінетики, природу уповільненої стадії й основні кінетичні характеристики електрохімічної реакції під час осадження золота. | |
dc.description.abstract | The kinetics of cathode reactions occurring on a gold electrode in acidic thiourea-citrate electrolytes has been studied. Using classical electrochemical methods (potentiometry, chronovoltammetry, electrogravimetry) and graphic-analytical calculations, the following were established: the instability constant of gold complexes, the type of kinetics, the nature of the delayed stage, and the main kinetic characteristics of the electrochemical reaction during gold deposition. | |
dc.format.extent | 237-243 | |
dc.format.pages | 7 | |
dc.identifier.citation | Smirnova O. Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes / Olha Smirnova, Nataliia Rudachenko, Oleksij Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 237–243. | |
dc.identifier.citationen | Smirnova O. Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes / Olha Smirnova, Nataliia Rudachenko, Oleksij Pylypenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 237–243. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.237 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61244 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Green, Т.А. Gold Electrodeposition for Microelectronic, Optoe-lectronic and Microsystem Applications. Gold Bull. 2007, 40, 105-114. https://doi.org/10.1007/BF03215566 | |
dc.relation.references | [2] Satpathy, B.; Jena, S.; Das, S.; Das, K. A comprehensive Review of Various Non-Cyanide Electroplating Baths for the Production of Silver and Gold Coatings. Int. Mat. Rev. 2022, 67, 1-37. https://doi.org/10.1080/09506608.2022.2156723 | |
dc.relation.references | [3] Tang, H.; Chen, Ch.; Chang, M.; Nagoshi, T.; Yamane, D.; Konishi, T.; Machida, K.; Masu, K.; Sone, M. Au–Cu Alloys Prepared by Pulse Electrodeposition toward Applications as Movable Micro-Components in Electronic Devices. J. Electrochem. Soc. 2018, 165, 58-63. https://doi.org/10.1149/2.0441802 | |
dc.relation.references | [4] Weisberg, A.M. Gold Plating. Met. Finish. 2000, 98, 248-261. https://doi.org/10.1016/S0026-0576(00)80331-1 | |
dc.relation.references | [5] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz kobalʹto-khromovoho splavu. UA 70525 А, October 2004. | |
dc.relation.references | [6] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz nikel-khromovoho splavu. UA 15313, January 2006. | |
dc.relation.references | [7] Nikonov, A.Yu.; Breslavets, N.M.; Smirnova, O.L.; Musienko, V.G.; Zhitomirskiy, A.O. Prospects for Victorian Preparations Based on Gold Nanoparticles in the Rehabilitation of Dental Patients. Oral and General Health 2021, 2, 33-36. | |
dc.relation.references | [8] Walton, T. Characterisation of Electroplated Gold Coatings for Dental Applications: Estimation of Thickness Using Non-Destructive Electron-Probe Microanalysis Related to Plating Time. Coatings 2021, 11, 874. https://doi.org/10.3390/coatings11080874 | |
dc.relation.references | [9] Smirnova, O.; Bairachnyi, B.; Nikonov, A. Elektrolit zolotinnya. UA 31325, April 2008. | |
dc.relation.references | [10] Smirnova, O.; Nikonov, A. Elektrolit osadzhennya pokryttiv splavom zoloto-midʹ. UA 27609, November 2007. | |
dc.relation.references | [11] Kato, M.; Okinaka, Y. Some Recent Developments in Non-Cyanide Gold Plating for Electronics Applications. Gold Bull. 2004, 37, 37-44. https://doi.org/10.1007/BF03215515 | |
dc.relation.references | [12] Zheng, L.; Yuan, X. An Investigation on the Performance of Gold Layer Based Cyanide-Free HAuCl4 Electroplating Process under Different Power Conditions. Mat. Today Comm. 2022, 31, 103711. https://doi.org/10.1016/j.mtcomm.2022.103711 | |
dc.relation.references | [13] Kubra, A.; Servet T. A Study on Gold-Silver Alloy Electrode-position from Pyrophosphate-Cyanide Electrolyte Using Polyethy-lenimine-KSeCN Additives. Int. J. Electrochem. Sci. 2018, 13, 3855-3873. https://doi.org/10.20964/2018.04.07 | |
dc.relation.references | [14] Ozcelik, T.; Yilmaz, B. Galvanic Gold Plating for Fixed Dental Prostheses. Eur. J. Dent. 2013, 7, 373-376. https://doi.org/10.4103/1305-7456.115426 | |
dc.relation.references | [15] Smirnova, O.; Brovin, A.; Pilipenko, A; Zhelavska, Yu. Studying the Kinetics of Electrode Reactions on Copper, Silver and Gold in Acid Thiourea-Citrate Electrolytes. Materials Today: Proceedings 2019, 6, 141-149. https://doi.org/10.1016/j.matpr.2018.10.087 | |
dc.relation.references | [16] Smirnova, O.; Yusov, Y.; Shytov, V. Elektrolitychne Osadzhennya Sribnykh i Zolotykh Pokrytʹ iz Kompleksnykh Elektrolitiv na Osnovi Orhanichnykh Lihandiv. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi instytut» 2017, 49, 72-78. | |
dc.relation.references | [17] Garcia-Hernandez, F.; Oskam, A.H.; Castano, V.M. Design and Construction of an Innovative Device for Corrosion Testing of Materials in Different Environments. Chem. Chem. Technol. 2009, 3, 301-303. https://doi.org/10.23939/chcht03.04.301 | |
dc.relation.references | [18] Sakhnenko, M.D.; Artemenko, V.M. Kinetyka elektrodnykh protsesiv; NTU «KhPI»: Kharkiv, 2014. | |
dc.relation.references | [19] Smirnova, O.; Pilipenko, A.; Pancheva, H.; Zhelavskyi, A.; Rutkovska, K. Study of Anode Processes During Development of the New Complex Thiocarbamide-Citrate Copper Plating Electrolyte. EasternEuropean J. Enterp. Technol. 2018, 1, 47-51. https://doi.org/10.15587/1729-4061.2018.123852 | |
dc.relation.references | [20] Smirnova, O.; Nikonov, A.; Pilipenko, A.; Brovin, A. Thiocarbamide-Citrate Electrolytes as an Alternative to Cyanide Electrolytes in Solving the Problems of Environmental Protection and Prevention of Emergency Situations. Materials Science Forum 2021, 1038, 185-192. https://doi.org/10.4028/www.scientific.net/MSF.1038.185 | |
dc.relation.referencesen | [1] Green, T.A. Gold Electrodeposition for Microelectronic, Optoe-lectronic and Microsystem Applications. Gold Bull. 2007, 40, 105-114. https://doi.org/10.1007/BF03215566 | |
dc.relation.referencesen | [2] Satpathy, B.; Jena, S.; Das, S.; Das, K. A comprehensive Review of Various Non-Cyanide Electroplating Baths for the Production of Silver and Gold Coatings. Int. Mat. Rev. 2022, 67, 1-37. https://doi.org/10.1080/09506608.2022.2156723 | |
dc.relation.referencesen | [3] Tang, H.; Chen, Ch.; Chang, M.; Nagoshi, T.; Yamane, D.; Konishi, T.; Machida, K.; Masu, K.; Sone, M. Au–Cu Alloys Prepared by Pulse Electrodeposition toward Applications as Movable Micro-Components in Electronic Devices. J. Electrochem. Soc. 2018, 165, 58-63. https://doi.org/10.1149/2.0441802 | |
dc.relation.referencesen | [4] Weisberg, A.M. Gold Plating. Met. Finish. 2000, 98, 248-261. https://doi.org/10.1016/S0026-0576(00)80331-1 | |
dc.relation.referencesen | [5] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz kobalʹto-khromovoho splavu. UA 70525 A, October 2004. | |
dc.relation.referencesen | [6] Nikonov, A.; Smirnova, O. Sposib obrobky zubnykh proteziv iz nikel-khromovoho splavu. UA 15313, January 2006. | |
dc.relation.referencesen | [7] Nikonov, A.Yu.; Breslavets, N.M.; Smirnova, O.L.; Musienko, V.G.; Zhitomirskiy, A.O. Prospects for Victorian Preparations Based on Gold Nanoparticles in the Rehabilitation of Dental Patients. Oral and General Health 2021, 2, 33-36. | |
dc.relation.referencesen | [8] Walton, T. Characterisation of Electroplated Gold Coatings for Dental Applications: Estimation of Thickness Using Non-Destructive Electron-Probe Microanalysis Related to Plating Time. Coatings 2021, 11, 874. https://doi.org/10.3390/coatings11080874 | |
dc.relation.referencesen | [9] Smirnova, O.; Bairachnyi, B.; Nikonov, A. Elektrolit zolotinnya. UA 31325, April 2008. | |
dc.relation.referencesen | [10] Smirnova, O.; Nikonov, A. Elektrolit osadzhennya pokryttiv splavom zoloto-midʹ. UA 27609, November 2007. | |
dc.relation.referencesen | [11] Kato, M.; Okinaka, Y. Some Recent Developments in Non-Cyanide Gold Plating for Electronics Applications. Gold Bull. 2004, 37, 37-44. https://doi.org/10.1007/BF03215515 | |
dc.relation.referencesen | [12] Zheng, L.; Yuan, X. An Investigation on the Performance of Gold Layer Based Cyanide-Free HAuCl4 Electroplating Process under Different Power Conditions. Mat. Today Comm. 2022, 31, 103711. https://doi.org/10.1016/j.mtcomm.2022.103711 | |
dc.relation.referencesen | [13] Kubra, A.; Servet T. A Study on Gold-Silver Alloy Electrode-position from Pyrophosphate-Cyanide Electrolyte Using Polyethy-lenimine-KSeCN Additives. Int. J. Electrochem. Sci. 2018, 13, 3855-3873. https://doi.org/10.20964/2018.04.07 | |
dc.relation.referencesen | [14] Ozcelik, T.; Yilmaz, B. Galvanic Gold Plating for Fixed Dental Prostheses. Eur. J. Dent. 2013, 7, 373-376. https://doi.org/10.4103/1305-7456.115426 | |
dc.relation.referencesen | [15] Smirnova, O.; Brovin, A.; Pilipenko, A; Zhelavska, Yu. Studying the Kinetics of Electrode Reactions on Copper, Silver and Gold in Acid Thiourea-Citrate Electrolytes. Materials Today: Proceedings 2019, 6, 141-149. https://doi.org/10.1016/j.matpr.2018.10.087 | |
dc.relation.referencesen | [16] Smirnova, O.; Yusov, Y.; Shytov, V. Elektrolitychne Osadzhennya Sribnykh i Zolotykh Pokrytʹ iz Kompleksnykh Elektrolitiv na Osnovi Orhanichnykh Lihandiv. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" 2017, 49, 72-78. | |
dc.relation.referencesen | [17] Garcia-Hernandez, F.; Oskam, A.H.; Castano, V.M. Design and Construction of an Innovative Device for Corrosion Testing of Materials in Different Environments. Chem. Chem. Technol. 2009, 3, 301-303. https://doi.org/10.23939/chcht03.04.301 | |
dc.relation.referencesen | [18] Sakhnenko, M.D.; Artemenko, V.M. Kinetyka elektrodnykh protsesiv; NTU "KhPI": Kharkiv, 2014. | |
dc.relation.referencesen | [19] Smirnova, O.; Pilipenko, A.; Pancheva, H.; Zhelavskyi, A.; Rutkovska, K. Study of Anode Processes During Development of the New Complex Thiocarbamide-Citrate Copper Plating Electrolyte. EasternEuropean J. Enterp. Technol. 2018, 1, 47-51. https://doi.org/10.15587/1729-4061.2018.123852 | |
dc.relation.referencesen | [20] Smirnova, O.; Nikonov, A.; Pilipenko, A.; Brovin, A. Thiocarbamide-Citrate Electrolytes as an Alternative to Cyanide Electrolytes in Solving the Problems of Environmental Protection and Prevention of Emergency Situations. Materials Science Forum 2021, 1038, 185-192. https://doi.org/10.4028/www.scientific.net/MSF.1038.185 | |
dc.relation.uri | https://doi.org/10.1007/BF03215566 | |
dc.relation.uri | https://doi.org/10.1080/09506608.2022.2156723 | |
dc.relation.uri | https://doi.org/10.1149/2.0441802 | |
dc.relation.uri | https://doi.org/10.1016/S0026-0576(00)80331-1 | |
dc.relation.uri | https://doi.org/10.3390/coatings11080874 | |
dc.relation.uri | https://doi.org/10.1007/BF03215515 | |
dc.relation.uri | https://doi.org/10.1016/j.mtcomm.2022.103711 | |
dc.relation.uri | https://doi.org/10.20964/2018.04.07 | |
dc.relation.uri | https://doi.org/10.4103/1305-7456.115426 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2018.10.087 | |
dc.relation.uri | https://doi.org/10.23939/chcht03.04.301 | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2018.123852 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/MSF.1038.185 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Smirnova O., Rudachenko N., Pylypenko O., 2023 | |
dc.subject | комплекс золота (I) | |
dc.subject | тіосечовина | |
dc.subject | цитратна кислота | |
dc.subject | катодна поляризація | |
dc.subject | електролітичне осадження | |
dc.subject | gold (I) complex | |
dc.subject | thiourea | |
dc.subject | citric acid | |
dc.subject | cathode polarization | |
dc.subject | electrolytic deposition | |
dc.title | Gold-Reducing Cathode Reactions Kinetics in Acid Thiourea Electrolytes | |
dc.title.alternative | Кінетика катодних реакцій відновлення золота в кислих тіосечовинних електролітах | |
dc.type | Article |
Files
License bundle
1 - 1 of 1