Дослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі
dc.citation.epage | 218 | |
dc.citation.issue | 1 | |
dc.citation.spage | 213 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Гриценко, О. М. | |
dc.contributor.author | Суберляк, О. В. | |
dc.contributor.author | Бережний, Б. В. | |
dc.contributor.author | Волошкевич, П. П. | |
dc.contributor.author | Grytsenko, O. M. | |
dc.contributor.author | Suberlyak, O. V. | |
dc.contributor.author | Berezhnyy, B. V. | |
dc.contributor.author | Voloshkevych, P. P. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:51Z | |
dc.date.available | 2024-01-22T08:14:51Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Досліджено властивості нікельнаповнених кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом та гідрогелевих матеріалів на їх основі, одержаних методом полімеризації з одночасним відновленням йонів металу. Встановлено вплив складу полімер-мономерної композиції, вмісту металу-наповнювача та умов проведення реакції відновлення йонів Ni2+ на фізико-механічні, сорбційні, електричні та магнітні характеристики отриманих матеріалів. Доведено, що частинки Ni(0) в структурі композитів на основі кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом проявляють каталітичну активність, зокрема, у процесі гідролізу борогідриду натрію. | |
dc.description.abstract | The properties of nickel-filled copolymers of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate and hydrogel materials based on them, obtained by the method of polymerization with simultaneous reduction of metal ions have been investigated. The influence of polymer-monomer composition formulation, content of metal-filler and conditions of Ni2+ reduction reaction on physico-mechanical, sorption, electrical and magnetic characteristics of obtained materials has been established. It has been found that Ni(0) particles in the composites’ structure on the basis of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate copolymers demonstrate catalytic activity, particularly, in the hydrolysis process of sodium borohydride. | |
dc.format.extent | 213-218 | |
dc.format.pages | 6 | |
dc.identifier.citation | Дослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі / О. М. Гриценко, О. В. Суберляк, Б. В. Бережний, П. П. Волошкевич // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 213–218. | |
dc.identifier.citationen | Investigation of the properties of nickel-filled copolymers of polyvinylpyrrolidone and hydrogel materials based on them / O. M. Grytsenko, O. V. Suberlyak, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 213–218. | |
dc.identifier.doi | doi.org/10.23939/ctas2021.01.213 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60862 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Nicolais, L., & Carotenuto, G. (2005). Metalpolymer nanocomposites; John Wiley & Sons: New Jersey, 304. doi:10.1002/0471695432. | |
dc.relation.references | 2. Hanemann, T., & Szabó, D. V. (2010). PolymerNanoparticle composites: from synthesis to modern applications. Materials, 3, 3468–3517. https://doi.org/10.3390/ma3063468. | |
dc.relation.references | 3. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., & Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, September 10–15 2017; IEEE, Odessa, Ukraine. doi: 10.1109/NAP.2017.8190265. | |
dc.relation.references | 4. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018). Functional StimuliResponsive Gels: Hydrogels and Microgels. Gels, 4(2), 54. doi:10.3390/gels4020054. | |
dc.relation.references | 5. Li, H., Yang, P., Pageni, P., Tang, Ch. (2017). Recent Advances in Metal-Containing Polymer Hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. DOI: 10.1002/marc.201700109. | |
dc.relation.references | 6. Li, X., Rombouts, W., Gucht, J., Vries, R., & Dijksman, J. A. (2019). Mechanics of composite hydrogels approaching phase separation. PLoS ONE, 14(1), e0211059. https://doi.org/10.1371/journal.pone.0211059. | |
dc.relation.references | 7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015). Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010. | |
dc.relation.references | 8. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956-1973. doi: 10.3390/ma12121956. | |
dc.relation.references | 9. Grytsenko, O. M., Naumenko, O. P., Suberlyak, O. V., Dulebova, L., & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. doi: 10.32434/0321-4095-2019-128-1-25-32 | |
dc.relation.references | 10. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004. | |
dc.relation.references | 11. Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 36, 1998–2006. https://doi.org/10.1016/j.ijhydene.2010.11.045. | |
dc.relation.references | 12. Grytsenko, O., Spiśak, Е., Dulebová, L., Moravskii, V., & Suberlyak, О. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97. | |
dc.relation.references | 13. Suberlyak, О., Grytsenko, O., Hischak, Kh., & Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488. | |
dc.relation.references | 14. Sahiner, N., Seven, F., & Al-lohedan, H. (2015). Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters. Water Air and Soil Pollution, 226(4), 10–13. https://doi.org/10.1007/s11270-014-2247-8. | |
dc.relation.references | 15. Grytsenko, O. M., Suberlyak, O. V., Dulebova L., Gaydos I., & Berezhnyy B. V. (2020). Osoblyvosti formuvannya struktury nikelʹnapovnenykh kopolimeriv polivinilpirolidonu pid chas polimeryzatsiyi z odnochasnym vidnovlennyam Ni2+. Chemistry, Technology and Application of Substances, 3(2), 127–134. (in Ukrainian). | |
dc.relation.references | 16. Grytsenko, O. M., Suberlyak, O. V, & Hishchak, Kh. Ya. (2015). Zakonomirnosti formuvannya metalonapovnenykh hidroheliv ta plivkovykh materialiv. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 20–25. (in Ukrainian). | |
dc.relation.references | 17. Lushcheykin, G. A. (1988). Metody issledovaniya elektricheskikh svoystv polimerov. M.: Khimiya, 158 s. (in Russian). | |
dc.relation.references | 18. Kondyr A. I., Borysyuk A. K., Pazdriy, I. P., & Shvachko S. H. (2004). Zastosuvannya vibratsiynoho mahnitometra dlya fazovoho analizu spetsialʹnykh staley ta splaviv. Vybratsyy v tekhnyke y tekhnolohiyakh, 2(34), 41–43. (in Ukrainian). | |
dc.relation.references | 19. Suberlyak, O. V., Skorokhoda, V. Y., & Hrytsenko, O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. (in Ukrainian). | |
dc.relation.references | 20. Liu, T.-Yu., Hu, S.-H., Liu, Ts.-Y., Liu, D.-M., & Chen, S.-Y. (2006). Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14), 5974–5978. https://doi.org/10.1021/la060371e. | |
dc.relation.references | 21. Ajmal, M., Aftab, F., Bibi, I, Iqbal, M., Ambreen, J., Ahmad, H. B., Akhtar, N., Haleem, A., & Siddiq, M. (2019). Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4nitrophenol. Journal of Porous Materials, 26, 281–290. https://doi.org/10.1007/s10934-018-0654-8 | |
dc.relation.references | 22. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011. | |
dc.relation.referencesen | 1. Nicolais, L., & Carotenuto, G. (2005). Metalpolymer nanocomposites; John Wiley & Sons: New Jersey, 304. doi:10.1002/0471695432. | |
dc.relation.referencesen | 2. Hanemann, T., & Szabó, D. V. (2010). PolymerNanoparticle composites: from synthesis to modern applications. Materials, 3, 3468–3517. https://doi.org/10.3390/ma3063468. | |
dc.relation.referencesen | 3. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., & Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, September 10–15 2017; IEEE, Odessa, Ukraine. doi: 10.1109/NAP.2017.8190265. | |
dc.relation.referencesen | 4. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018). Functional StimuliResponsive Gels: Hydrogels and Microgels. Gels, 4(2), 54. doi:10.3390/gels4020054. | |
dc.relation.referencesen | 5. Li, H., Yang, P., Pageni, P., Tang, Ch. (2017). Recent Advances in Metal-Containing Polymer Hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. DOI: 10.1002/marc.201700109. | |
dc.relation.referencesen | 6. Li, X., Rombouts, W., Gucht, J., Vries, R., & Dijksman, J. A. (2019). Mechanics of composite hydrogels approaching phase separation. PLoS ONE, 14(1), e0211059. https://doi.org/10.1371/journal.pone.0211059. | |
dc.relation.referencesen | 7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015). Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010. | |
dc.relation.referencesen | 8. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956-1973. doi: 10.3390/ma12121956. | |
dc.relation.referencesen | 9. Grytsenko, O. M., Naumenko, O. P., Suberlyak, O. V., Dulebova, L., & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. doi: 10.32434/0321-4095-2019-128-1-25-32 | |
dc.relation.referencesen | 10. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004. | |
dc.relation.referencesen | 11. Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 36, 1998–2006. https://doi.org/10.1016/j.ijhydene.2010.11.045. | |
dc.relation.referencesen | 12. Grytsenko, O., Spiśak, E., Dulebová, L., Moravskii, V., & Suberlyak, O. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97. | |
dc.relation.referencesen | 13. Suberlyak, O., Grytsenko, O., Hischak, Kh., & Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488. | |
dc.relation.referencesen | 14. Sahiner, N., Seven, F., & Al-lohedan, H. (2015). Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters. Water Air and Soil Pollution, 226(4), 10–13. https://doi.org/10.1007/s11270-014-2247-8. | |
dc.relation.referencesen | 15. Grytsenko, O. M., Suberlyak, O. V., Dulebova L., Gaydos I., & Berezhnyy B. V. (2020). Osoblyvosti formuvannya struktury nikelʹnapovnenykh kopolimeriv polivinilpirolidonu pid chas polimeryzatsiyi z odnochasnym vidnovlennyam Ni2+. Chemistry, Technology and Application of Substances, 3(2), 127–134. (in Ukrainian). | |
dc.relation.referencesen | 16. Grytsenko, O. M., Suberlyak, O. V, & Hishchak, Kh. Ya. (2015). Zakonomirnosti formuvannya metalonapovnenykh hidroheliv ta plivkovykh materialiv. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 20–25. (in Ukrainian). | |
dc.relation.referencesen | 17. Lushcheykin, G. A. (1988). Metody issledovaniya elektricheskikh svoystv polimerov. M., Khimiya, 158 s. (in Russian). | |
dc.relation.referencesen | 18. Kondyr A. I., Borysyuk A. K., Pazdriy, I. P., & Shvachko S. H. (2004). Zastosuvannya vibratsiynoho mahnitometra dlya fazovoho analizu spetsialʹnykh staley ta splaviv. Vybratsyy v tekhnyke y tekhnolohiyakh, 2(34), 41–43. (in Ukrainian). | |
dc.relation.referencesen | 19. Suberlyak, O. V., Skorokhoda, V. Y., & Hrytsenko, O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. (in Ukrainian). | |
dc.relation.referencesen | 20. Liu, T.-Yu., Hu, S.-H., Liu, Ts.-Y., Liu, D.-M., & Chen, S.-Y. (2006). Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14), 5974–5978. https://doi.org/10.1021/la060371e. | |
dc.relation.referencesen | 21. Ajmal, M., Aftab, F., Bibi, I, Iqbal, M., Ambreen, J., Ahmad, H. B., Akhtar, N., Haleem, A., & Siddiq, M. (2019). Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4nitrophenol. Journal of Porous Materials, 26, 281–290. https://doi.org/10.1007/s10934-018-0654-8 | |
dc.relation.referencesen | 22. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011. | |
dc.relation.uri | https://doi.org/10.3390/ma3063468 | |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0211059 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2010.07.004 | |
dc.relation.uri | https://doi.org/10.1016/j.ijhydene.2010.11.045 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/MSF.818.97 | |
dc.relation.uri | http://ena.lp.edu.ua:8080/handle/ntb/23488 | |
dc.relation.uri | https://doi.org/10.1007/s11270-014-2247-8 | |
dc.relation.uri | https://doi.org/10.1021/la060371e | |
dc.relation.uri | https://doi.org/10.1007/s10934-018-0654-8 | |
dc.relation.uri | https://doi.org/10.1016/j.fuel.2015.11.011 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | нікель | |
dc.subject | полівінілпіролідон | |
dc.subject | 2-гідроксіетилметакрилат | |
dc.subject | кополімер | |
dc.subject | гідрогелі | |
dc.subject | нікельнаповнені гідрогелі | |
dc.subject | nickel | |
dc.subject | polyvinylpyrrolidone | |
dc.subject | 2-hydroxyethylmethacrylate | |
dc.subject | co-polymer | |
dc.subject | hydrogels | |
dc.subject | nickel-containing hydrogels | |
dc.title | Дослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі | |
dc.title.alternative | Investigation of the properties of nickel-filled copolymers of polyvinylpyrrolidone and hydrogel materials based on them | |
dc.type | Article |
Files
License bundle
1 - 1 of 1