Дослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі

dc.citation.epage218
dc.citation.issue1
dc.citation.spage213
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГриценко, О. М.
dc.contributor.authorСуберляк, О. В.
dc.contributor.authorБережний, Б. В.
dc.contributor.authorВолошкевич, П. П.
dc.contributor.authorGrytsenko, O. M.
dc.contributor.authorSuberlyak, O. V.
dc.contributor.authorBerezhnyy, B. V.
dc.contributor.authorVoloshkevych, P. P.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:51Z
dc.date.available2024-01-22T08:14:51Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractДосліджено властивості нікельнаповнених кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом та гідрогелевих матеріалів на їх основі, одержаних методом полімеризації з одночасним відновленням йонів металу. Встановлено вплив складу полімер-мономерної композиції, вмісту металу-наповнювача та умов проведення реакції відновлення йонів Ni2+ на фізико-механічні, сорбційні, електричні та магнітні характеристики отриманих матеріалів. Доведено, що частинки Ni(0) в структурі композитів на основі кополімерів полівінілпіролідону з 2-гідроксіетилметакрилатом проявляють каталітичну активність, зокрема, у процесі гідролізу борогідриду натрію.
dc.description.abstractThe properties of nickel-filled copolymers of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate and hydrogel materials based on them, obtained by the method of polymerization with simultaneous reduction of metal ions have been investigated. The influence of polymer-monomer composition formulation, content of metal-filler and conditions of Ni2+ reduction reaction on physico-mechanical, sorption, electrical and magnetic characteristics of obtained materials has been established. It has been found that Ni(0) particles in the composites’ structure on the basis of polyvinylpyrrolidone with 2-hydroxyethylmethacrylate copolymers demonstrate catalytic activity, particularly, in the hydrolysis process of sodium borohydride.
dc.format.extent213-218
dc.format.pages6
dc.identifier.citationДослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі / О. М. Гриценко, О. В. Суберляк, Б. В. Бережний, П. П. Волошкевич // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 213–218.
dc.identifier.citationenInvestigation of the properties of nickel-filled copolymers of polyvinylpyrrolidone and hydrogel materials based on them / O. M. Grytsenko, O. V. Suberlyak, B. V. Berezhnyy, P. P. Voloshkevych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 213–218.
dc.identifier.doidoi.org/10.23939/ctas2021.01.213
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60862
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Nicolais, L., & Carotenuto, G. (2005). Metalpolymer nanocomposites; John Wiley & Sons: New Jersey, 304. doi:10.1002/0471695432.
dc.relation.references2. Hanemann, T., & Szabó, D. V. (2010). PolymerNanoparticle composites: from synthesis to modern applications. Materials, 3, 3468–3517. https://doi.org/10.3390/ma3063468.
dc.relation.references3. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., & Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, September 10–15 2017; IEEE, Odessa, Ukraine. doi: 10.1109/NAP.2017.8190265.
dc.relation.references4. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018). Functional StimuliResponsive Gels: Hydrogels and Microgels. Gels, 4(2), 54. doi:10.3390/gels4020054.
dc.relation.references5. Li, H., Yang, P., Pageni, P., Tang, Ch. (2017). Recent Advances in Metal-Containing Polymer Hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. DOI: 10.1002/marc.201700109.
dc.relation.references6. Li, X., Rombouts, W., Gucht, J., Vries, R., & Dijksman, J. A. (2019). Mechanics of composite hydrogels approaching phase separation. PLoS ONE, 14(1), e0211059. https://doi.org/10.1371/journal.pone.0211059.
dc.relation.references7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015). Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010.
dc.relation.references8. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956-1973. doi: 10.3390/ma12121956.
dc.relation.references9. Grytsenko, O. M., Naumenko, O. P., Suberlyak, O. V., Dulebova, L., & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. doi: 10.32434/0321-4095-2019-128-1-25-32
dc.relation.references10. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004.
dc.relation.references11. Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 36, 1998–2006. https://doi.org/10.1016/j.ijhydene.2010.11.045.
dc.relation.references12. Grytsenko, O., Spiśak, Е., Dulebová, L., Moravskii, V., & Suberlyak, О. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97.
dc.relation.references13. Suberlyak, О., Grytsenko, O., Hischak, Kh., & Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
dc.relation.references14. Sahiner, N., Seven, F., & Al-lohedan, H. (2015). Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters. Water Air and Soil Pollution, 226(4), 10–13. https://doi.org/10.1007/s11270-014-2247-8.
dc.relation.references15. Grytsenko, O. M., Suberlyak, O. V., Dulebova L., Gaydos I., & Berezhnyy B. V. (2020). Osoblyvosti formuvannya struktury nikelʹnapovnenykh kopolimeriv polivinilpirolidonu pid chas polimeryzatsiyi z odnochasnym vidnovlennyam Ni2+. Chemistry, Technology and Application of Substances, 3(2), 127–134. (in Ukrainian).
dc.relation.references16. Grytsenko, O. M., Suberlyak, O. V, & Hishchak, Kh. Ya. (2015). Zakonomirnosti formuvannya metalonapovnenykh hidroheliv ta plivkovykh materialiv. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 20–25. (in Ukrainian).
dc.relation.references17. Lushcheykin, G. A. (1988). Metody issledovaniya elektricheskikh svoystv polimerov. M.: Khimiya, 158 s. (in Russian).
dc.relation.references18. Kondyr A. I., Borysyuk A. K., Pazdriy, I. P., & Shvachko S. H. (2004). Zastosuvannya vibratsiynoho mahnitometra dlya fazovoho analizu spetsialʹnykh staley ta splaviv. Vybratsyy v tekhnyke y tekhnolohiyakh, 2(34), 41–43. (in Ukrainian).
dc.relation.references19. Suberlyak, O. V., Skorokhoda, V. Y., & Hrytsenko, O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. (in Ukrainian).
dc.relation.references20. Liu, T.-Yu., Hu, S.-H., Liu, Ts.-Y., Liu, D.-M., & Chen, S.-Y. (2006). Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14), 5974–5978. https://doi.org/10.1021/la060371e.
dc.relation.references21. Ajmal, M., Aftab, F., Bibi, I, Iqbal, M., Ambreen, J., Ahmad, H. B., Akhtar, N., Haleem, A., & Siddiq, M. (2019). Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4nitrophenol. Journal of Porous Materials, 26, 281–290. https://doi.org/10.1007/s10934-018-0654-8
dc.relation.references22. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011.
dc.relation.referencesen1. Nicolais, L., & Carotenuto, G. (2005). Metalpolymer nanocomposites; John Wiley & Sons: New Jersey, 304. doi:10.1002/0471695432.
dc.relation.referencesen2. Hanemann, T., & Szabó, D. V. (2010). PolymerNanoparticle composites: from synthesis to modern applications. Materials, 3, 3468–3517. https://doi.org/10.3390/ma3063468.
dc.relation.referencesen3. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., & Kuznetsova, M. (2017). Features of the production of metal-filled composites by metallization of polymeric raw materials. 7th International Conference Nanomaterials: Application & Properties (NAP), Zatoka, Ukraine, September 10–15 2017; IEEE, Odessa, Ukraine. doi: 10.1109/NAP.2017.8190265.
dc.relation.referencesen4. Echeverria, C., Fernandes, S., Godinho, M., Borges, J., & Soares, P. (2018). Functional StimuliResponsive Gels: Hydrogels and Microgels. Gels, 4(2), 54. doi:10.3390/gels4020054.
dc.relation.referencesen5. Li, H., Yang, P., Pageni, P., Tang, Ch. (2017). Recent Advances in Metal-Containing Polymer Hydrogels. Macromolecular Rapid Communications, 38(14), 1–20. DOI: 10.1002/marc.201700109.
dc.relation.referencesen6. Li, X., Rombouts, W., Gucht, J., Vries, R., & Dijksman, J. A. (2019). Mechanics of composite hydrogels approaching phase separation. PLoS ONE, 14(1), e0211059. https://doi.org/10.1371/journal.pone.0211059.
dc.relation.referencesen7. Thoniyot, P., Tan, M. J., Karim, A. A., Young, D. J., & Loh, X. J. (2015). Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials. Advanced Science, 2(1–2), 1400010. doi:10.1002/advs.201400010.
dc.relation.referencesen8. Grytsenko, O., Gajdos, I., Spišák, E., Krasinskyi, V., & Suberlyak, O. (2019). Novel Ni/pHEMA-gr-PVP Composites Obtained by Polymerization with Simultaneous Metal Deposition: Structure and Properties. Materials, 12(12), 1956-1973. doi: 10.3390/ma12121956.
dc.relation.referencesen9. Grytsenko, O. M., Naumenko, O. P., Suberlyak, O. V., Dulebova, L., & Berezhnyy, B. V. (2020). The technological parameters optimization of the graft copolymerization 2-hydroxyethyl methacrylate with polyvinylpyrrolidone for nickel deposition from salts. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 25–32. doi: 10.32434/0321-4095-2019-128-1-25-32
dc.relation.referencesen10. Sahiner, N., Ozay, H., Ozay, O., & Aktas, N. (2010). New catalytic route: Hydrogels as templates and reactors for in situ Ni nanoparticle synthesis and usage in the reduction of 2- and 4-nitrophenols. Applied Catalysis A: General, 385, 201–207. https://doi.org/10.1016/j.apcata.2010.07.004.
dc.relation.referencesen11. Ozay, O., Aktas, N., Inger, E., & Sahiner, N. (2011). Hydrogel assisted nickel nanoparticle synthesis and their use in hydrogen production from sodium boron hydride. International Journal of Hydrogen Energy, 36, 1998–2006. https://doi.org/10.1016/j.ijhydene.2010.11.045.
dc.relation.referencesen12. Grytsenko, O., Spiśak, E., Dulebová, L., Moravskii, V., & Suberlyak, O. (2015). Sorption capable film coatings with variable conductivity. Materials Science Forum, 818, 97–101. https://doi.org/10.4028/www.scientific.net/MSF.818.97.
dc.relation.referencesen13. Suberlyak, O., Grytsenko, O., Hischak, Kh., & Hnatchuk, N. (2013). Researching influence the nature of metal on mechanism of synthesis polyvinilpyrrolidone metal copolymers. Chemistry and Chemical Technology, 7, 289–294. http://ena.lp.edu.ua:8080/handle/ntb/23488.
dc.relation.referencesen14. Sahiner, N., Seven, F., & Al-lohedan, H. (2015). Superporous Cryogel-M (Cu, Ni, and Co) Composites in Catalytic Reduction of Toxic Phenolic Compounds and Dyes from Wastewaters. Water Air and Soil Pollution, 226(4), 10–13. https://doi.org/10.1007/s11270-014-2247-8.
dc.relation.referencesen15. Grytsenko, O. M., Suberlyak, O. V., Dulebova L., Gaydos I., & Berezhnyy B. V. (2020). Osoblyvosti formuvannya struktury nikelʹnapovnenykh kopolimeriv polivinilpirolidonu pid chas polimeryzatsiyi z odnochasnym vidnovlennyam Ni2+. Chemistry, Technology and Application of Substances, 3(2), 127–134. (in Ukrainian).
dc.relation.referencesen16. Grytsenko, O. M., Suberlyak, O. V, & Hishchak, Kh. Ya. (2015). Zakonomirnosti formuvannya metalonapovnenykh hidroheliv ta plivkovykh materialiv. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 20–25. (in Ukrainian).
dc.relation.referencesen17. Lushcheykin, G. A. (1988). Metody issledovaniya elektricheskikh svoystv polimerov. M., Khimiya, 158 s. (in Russian).
dc.relation.referencesen18. Kondyr A. I., Borysyuk A. K., Pazdriy, I. P., & Shvachko S. H. (2004). Zastosuvannya vibratsiynoho mahnitometra dlya fazovoho analizu spetsialʹnykh staley ta splaviv. Vybratsyy v tekhnyke y tekhnolohiyakh, 2(34), 41–43. (in Ukrainian).
dc.relation.referencesen19. Suberlyak, O. V., Skorokhoda, V. Y., & Hrytsenko, O. M. (2000). Naukovi aspekty rozroblennya tekhnolohiyi syntezu hidrofilʹnykh kopolimeriv polivinilpirolidonu. Voprosy khymyy y khymycheskoy tekhnolohy, 1, 236–238. (in Ukrainian).
dc.relation.referencesen20. Liu, T.-Yu., Hu, S.-H., Liu, Ts.-Y., Liu, D.-M., & Chen, S.-Y. (2006). Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir, 22(14), 5974–5978. https://doi.org/10.1021/la060371e.
dc.relation.referencesen21. Ajmal, M., Aftab, F., Bibi, I, Iqbal, M., Ambreen, J., Ahmad, H. B., Akhtar, N., Haleem, A., & Siddiq, M. (2019). Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4nitrophenol. Journal of Porous Materials, 26, 281–290. https://doi.org/10.1007/s10934-018-0654-8
dc.relation.referencesen22. Cai, H., Lu, P., & Dong, J. (2016). Robust nickel-polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel, 166, 297–301. https://doi.org/10.1016/j.fuel.2015.11.011.
dc.relation.urihttps://doi.org/10.3390/ma3063468
dc.relation.urihttps://doi.org/10.1371/journal.pone.0211059
dc.relation.urihttps://doi.org/10.1016/j.apcata.2010.07.004
dc.relation.urihttps://doi.org/10.1016/j.ijhydene.2010.11.045
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/MSF.818.97
dc.relation.urihttp://ena.lp.edu.ua:8080/handle/ntb/23488
dc.relation.urihttps://doi.org/10.1007/s11270-014-2247-8
dc.relation.urihttps://doi.org/10.1021/la060371e
dc.relation.urihttps://doi.org/10.1007/s10934-018-0654-8
dc.relation.urihttps://doi.org/10.1016/j.fuel.2015.11.011
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectнікель
dc.subjectполівінілпіролідон
dc.subject2-гідроксіетилметакрилат
dc.subjectкополімер
dc.subjectгідрогелі
dc.subjectнікельнаповнені гідрогелі
dc.subjectnickel
dc.subjectpolyvinylpyrrolidone
dc.subject2-hydroxyethylmethacrylate
dc.subjectco-polymer
dc.subjecthydrogels
dc.subjectnickel-containing hydrogels
dc.titleДослідження властивостей нікельнаповнених кополімерів полівінілпіролідону та гідрогелевих матеріалів на їх основі
dc.title.alternativeInvestigation of the properties of nickel-filled copolymers of polyvinylpyrrolidone and hydrogel materials based on them
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2021v4n1_Grytsenko_O_M-Investigation_of_the_213-218.pdf
Size:
768.08 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2021v4n1_Grytsenko_O_M-Investigation_of_the_213-218__COVER.png
Size:
1.21 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: