A new improved simulated annealing for traveling salesman problem
dc.citation.epage | 771 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 764 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.author | Аділь, Н. | |
dc.contributor.author | Лахбаб, Х. | |
dc.contributor.author | Adil, N. | |
dc.contributor.author | Lakhbab, H. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T12:17:24Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Алгоритм симулювання відпалу (SA) є однією з найпопулярніших метаевристик, яка успішно застосовувалася до багатьох задач оптимізації. Головною перевагою SA є його здатність відходити від локальних оптимумів, дозволяючи рухи вверх та досліджувати нові розв’язки на початку процесу пошуку. Одним із його недоліків є його повільна збіжність, що вимагає великого часу обчислення для хорошого набору значень параметрів для пошуку розумного розв’язку. У цій роботі пропонується новий покращений SA для розв’язання відомої задачі комівояжера. Щоб покращити продуктивність SA, після фази прийняття SA включено процедуру покращення на основі популяції, що дозволяє алгоритму використовувати переваги соціальної поведінки деяких розв’язків із простору пошуку. Чисельні результати були проведені з використанням відомих екземплярів TSP від TSPLIB, і попередні результати показують, що запропонований алгоритм перевершує інші алгоритми порівняння з точки зору якості розв’язків. | |
dc.description.abstract | Simulated annealing algorithm is one of the most popular metaheuristics that has been successfully applied to many optimization problems. The main advantage of SA is its ability to escape from local optima by allowing hill-climbing moves and exploring new solutions at the beginning of the search process. One of its drawbacks is its slow convergence, requiring high computational time with a good set of parameter values to find a reasonable solution. In this work, a new improved SA is proposed to solve the well-known travelling salesman problem. In order to improve SA performance, a population-based improvement procedure is incorporated after the acceptance phase of SA, allowing the algorithm to take advantage of the social behavior of some solutions from the search space. Numerical results were carried out using known TSP instances from TSPLIB and preliminary results show that the proposed algorithm outperforms in terms of solution quality, the other comparison algorithms. | |
dc.format.extent | 764-771 | |
dc.format.pages | 8 | |
dc.identifier.citation | Adil N. A new improved simulated annealing for traveling salesman problem / N. Adil, H. Lakhbab // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 764–771. | |
dc.identifier.citationen | Adil N. A new improved simulated annealing for traveling salesman problem / N. Adil, H. Lakhbab // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 3. — P. 764–771. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.03.764 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63512 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 3 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 3 (10), 2023 | |
dc.relation.references | [1] Glover F. Tabu Search — Part I. ORSA Journal on Computing. 1 (3), 190–206 (1989). | |
dc.relation.references | [2] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by Simulated Annealing. Science. 220 (4598), 671–680 (1983). | |
dc.relation.references | [3] Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 – International Conference on Neural Networks. 4, 1942–1948 (1995). | |
dc.relation.references | [4] Dantzig G. B., Fulkerson D. R., Johnson S. M. On a Linear-Programming, Combinatorial Approach to the Traveling-Salesman Problem. Operations Research. 7 (1), 58–66 (1959). | |
dc.relation.references | [5] Brucker P. NP-Complete operations research problems and approximation algorithms. Zeitschrift fur Operations – Research. 23, 73–94 (1979). | |
dc.relation.references | [6] Zhong Y., Wang L., Lin M., Zhang H. Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem. Swarm and Evolutionary Computation. 48, 134–144 (2019). | |
dc.relation.references | [7] Ezugwu A. E., Adewumi A. O., Frоncu M. E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem. Expert Systems with Applications. 77, 189–210 (2017). | |
dc.relation.references | [8] Zhou A.-H., Zhu L.-P., Hu B., Deng S., Song Y., Qiu H., Pan S. Traveling-Salesman-Problem Algorithm Based on Simulated Annealing and Gene-Expression Programming. Information. 10 (1), 7 (2019). | |
dc.relation.references | [9] Zhong Y., Lin J., Wang L., Zhang H. Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation. 42, 77–88 (2018). | |
dc.relation.references | [10] Geng X., Chen Z., Yang W., Shi D., Zhao K. Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Applied Soft Computing. 11 (4), 3680–3689 (2011). | |
dc.relation.references | [11] Osaba E., Carballedo R., Lopez-Garcia P., Diaz F. Comparison between Golden Ball Meta-Heuristic, Evolutionary Simulated Annealing and Tabu Search for the Traveling Salesman Problem. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. 1469–1470 (2016). | |
dc.relation.references | [12] Zhan S.-h., Lin J., Zhang Z.-j., Zhong Y.-w. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem. Computational Intelligence and Neuroscience. 2016, 1712630 (2016). | |
dc.relation.references | [13] Schneider J. J., Puchta M. Investigation of acceptance simulated annealing — A simplified approach to adaptive cooling schedules. Physica A. 389 (24), 5822–5831 (2010). | |
dc.relation.references | [14] Da Silva R., Filho E. V., Alves A. A thorough study of the performance of simulated annealing in the traveling salesman problem under correlated and long tailed spatial scenarios. Physica A. 577, 126067 (2021). | |
dc.relation.references | [15] Osaba E., Yang X.-S., Diaz F., Lopez-Garcia P., Carballedo R. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence. 48 (24), 59–71 (2016). | |
dc.relation.references | [16] Reinelt G. Tsplib — A Traveling Salesman Problem Library. ORSA Journal on Computing. 3 (4), 376–384 (1991). | |
dc.relation.references | [17] Derrac J., Garc´ıa S., Molina D., Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 1 (1), 3–18 (2011). | |
dc.relation.references | [18] Sundar A., Rahmin N. A. A., Chen C. Y., Nazihah M. A. Simulated annealing approach for outpatient scheduling in a haemodialysis unit. Mathematical Modeling and Computing. 9 (4), 860–870 (2022). | |
dc.relation.references | [19] Yu V. F., Redi A. A. N. P., Hidayat Y. A., Wibowo O. J. A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing. 53 (C), 119–132 (2017). | |
dc.relation.referencesen | [1] Glover F. Tabu Search - Part I. ORSA Journal on Computing. 1 (3), 190–206 (1989). | |
dc.relation.referencesen | [2] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by Simulated Annealing. Science. 220 (4598), 671–680 (1983). | |
dc.relation.referencesen | [3] Kennedy J., Eberhart R. Particle swarm optimization. Proceedings of ICNN’95 – International Conference on Neural Networks. 4, 1942–1948 (1995). | |
dc.relation.referencesen | [4] Dantzig G. B., Fulkerson D. R., Johnson S. M. On a Linear-Programming, Combinatorial Approach to the Traveling-Salesman Problem. Operations Research. 7 (1), 58–66 (1959). | |
dc.relation.referencesen | [5] Brucker P. NP-Complete operations research problems and approximation algorithms. Zeitschrift fur Operations – Research. 23, 73–94 (1979). | |
dc.relation.referencesen | [6] Zhong Y., Wang L., Lin M., Zhang H. Discrete pigeon-inspired optimization algorithm with Metropolis acceptance criterion for large-scale traveling salesman problem. Swarm and Evolutionary Computation. 48, 134–144 (2019). | |
dc.relation.referencesen | [7] Ezugwu A. E., Adewumi A. O., Froncu M. E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem. Expert Systems with Applications. 77, 189–210 (2017). | |
dc.relation.referencesen | [8] Zhou A.-H., Zhu L.-P., Hu B., Deng S., Song Y., Qiu H., Pan S. Traveling-Salesman-Problem Algorithm Based on Simulated Annealing and Gene-Expression Programming. Information. 10 (1), 7 (2019). | |
dc.relation.referencesen | [9] Zhong Y., Lin J., Wang L., Zhang H. Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem. Swarm and Evolutionary Computation. 42, 77–88 (2018). | |
dc.relation.referencesen | [10] Geng X., Chen Z., Yang W., Shi D., Zhao K. Solving the traveling salesman problem based on an adaptive simulated annealing algorithm with greedy search. Applied Soft Computing. 11 (4), 3680–3689 (2011). | |
dc.relation.referencesen | [11] Osaba E., Carballedo R., Lopez-Garcia P., Diaz F. Comparison between Golden Ball Meta-Heuristic, Evolutionary Simulated Annealing and Tabu Search for the Traveling Salesman Problem. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. 1469–1470 (2016). | |
dc.relation.referencesen | [12] Zhan S.-h., Lin J., Zhang Z.-j., Zhong Y.-w. List-Based Simulated Annealing Algorithm for Traveling Salesman Problem. Computational Intelligence and Neuroscience. 2016, 1712630 (2016). | |
dc.relation.referencesen | [13] Schneider J. J., Puchta M. Investigation of acceptance simulated annealing - A simplified approach to adaptive cooling schedules. Physica A. 389 (24), 5822–5831 (2010). | |
dc.relation.referencesen | [14] Da Silva R., Filho E. V., Alves A. A thorough study of the performance of simulated annealing in the traveling salesman problem under correlated and long tailed spatial scenarios. Physica A. 577, 126067 (2021). | |
dc.relation.referencesen | [15] Osaba E., Yang X.-S., Diaz F., Lopez-Garcia P., Carballedo R. An improved discrete bat algorithm for symmetric and asymmetric Traveling Salesman Problems. Engineering Applications of Artificial Intelligence. 48 (24), 59–71 (2016). | |
dc.relation.referencesen | [16] Reinelt G. Tsplib - A Traveling Salesman Problem Library. ORSA Journal on Computing. 3 (4), 376–384 (1991). | |
dc.relation.referencesen | [17] Derrac J., Garc´ıa S., Molina D., Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 1 (1), 3–18 (2011). | |
dc.relation.referencesen | [18] Sundar A., Rahmin N. A. A., Chen C. Y., Nazihah M. A. Simulated annealing approach for outpatient scheduling in a haemodialysis unit. Mathematical Modeling and Computing. 9 (4), 860–870 (2022). | |
dc.relation.referencesen | [19] Yu V. F., Redi A. A. N. P., Hidayat Y. A., Wibowo O. J. A simulated annealing heuristic for the hybrid vehicle routing problem. Applied Soft Computing. 53 (C), 119–132 (2017). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | імітований відпал | |
dc.subject | задача комівояжера | |
dc.subject | метаевристики | |
dc.subject | simulated annealing | |
dc.subject | travelling salesman problem | |
dc.subject | metaheuristics | |
dc.title | A new improved simulated annealing for traveling salesman problem | |
dc.title.alternative | Нова покращена симуляція відпалу для задачі комівояжера | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1