Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution
dc.citation.epage | 152 | |
dc.citation.issue | 1 | |
dc.citation.spage | 148 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Symak, Dmytro | |
dc.contributor.author | Sabadash, Vira | |
dc.contributor.author | Gumnitsky, Jaroslaw | |
dc.contributor.author | Hnativ, Zoriana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T09:32:59Z | |
dc.date.available | 2024-01-09T09:32:59Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Досліджено процес розчинення частинок калій хлориду в апараті з механічним перемішуванням дволопатевою мішалкою та визначено коефіцієнт масовіддачі. Експериментальні результати узагальнено критеріальною залежністю. Підтверджено незалежність коефіцієнта масовіддачі від діаметра твердих частинок. Розглянуто протитечійний процес розчинення калійної солі у двох апаратах з механічним перемішуванням. Розроблено математичну модель для протитечійного розчинення та визначено ефективність даного процесу. | |
dc.description.abstract | The dissolution process of potassium chloride particles in the apparatus with two-blade mechanical stirrer was investigated and the mass transfer coefficient was determined. The experimental results were generalized by criterion dependence. The independence of the mass transfer coefficient from the solid particles diameter was confirmed. A countercurrent process of potassium salt dissolution in two apparatuses with a mechanical stirring was considered. A mathematical model for countercurrent dissolution was developed and the efficiency of this process was determined. | |
dc.format.extent | 148-152 | |
dc.format.pages | 5 | |
dc.identifier.citation | Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution / Dmytro Symak, Vira Sabadash, Jaroslaw Gumnitsky, Zoriana Hnativ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 148–152. | |
dc.identifier.citationen | Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution / Dmytro Symak, Vira Sabadash, Jaroslaw Gumnitsky, Zoriana Hnativ // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 1. — P. 148–152. | |
dc.identifier.doi | doi.org/10.23939/chcht15.01.148 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60697 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (15), 2021 | |
dc.relation.references | [1] Zdanovskyi, A.: Galurgia. Khimia, Leningrad 1972. | |
dc.relation.references | [2] Akselrud G., Molczanov A.: Rastvoreniye Tviordykh Veshczestv. Khimia, Moskva 1977. | |
dc.relation.references | [3] Stankovic S., Moric I., Pavic A.,Vojnovic S. et al.:J. Serb. Chem. Soc., 2015, 80, 391. https://doi.org/10.2298/JSC140411097S | |
dc.relation.references | [4] Okuniewski M., Ramjugernath D., Paramespri N., Domanska U.:J. Chem. Thermodyn., 2014, 77, 23. https://doi.org/10.1016/j.jct.2014.04.021 | |
dc.relation.references | [5] Tully G., Hou G., Glen B.: Chem. Eng. Data, 2016, 61, 594. https://doi.org/10.1021/acs.jced.5b00746 | |
dc.relation.references | [6] Shvartsev B., Gelman D., Komissarov I., Epshtein A. et al.: Chem. Phys. Chem., 2015, 16, 370. https://doi.org/10.1002/cphc.201402627 | |
dc.relation.references | [7] Zou F., Zhuang W., Wu J. et al.:J. Chem.Themodyn., 2014, 77, 14. https://doi.org/10.1016/j.jct.2014.04.023 | |
dc.relation.references | [8] Yu X., Shen Z., Sun Q. et al.:J. Chem. Eng. Data, 2016, 61, 1236. https://doi.org/10.1021/acs.jced.5b00880 | |
dc.relation.references | [9] Zhao H., Chen J., Liu C. et al.:J. Chem. Eng. Data, 2015, 60, 3201. https://doi.org/10.1021/acs.jced.5b00417 | |
dc.relation.references | [10] MacCarthy J., Nosrati A., Skinner W., Addai-Mensah J.: Chem. Eng. Res. Des., 2014, 92, 2509. https://doi.org/10.1016/j.cherd.2014.02.020 | |
dc.relation.references | [11] Huang X., Wang J., Hao H. et al.: Fluid Phase Equilibria, 2015, 394, 148. https://doi.org/10.1016/j.fluid.2015.03.022 | |
dc.relation.references | [12] Morgenstern L.: Teor. Osnovy Khim. Tekhn., 2014, 48, 122. | |
dc.relation.references | [13] Khacevycz O., Artus M., Kostiv I.: Khim. Prom. Ukrainy, 2015, 3, 37. | |
dc.relation.references | [14] Artus M., Kostiv I.: Khim. Prom.Ukrainy, 2015, 6, 39. | |
dc.relation.references | [15] Symak D., Atamaniuk V., Gumnitskyy Y.: Chem. Chem. Technol., 2015, 9, 493. https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.references | [16] Babenko Yu., Ivanov, E.: Teor. Osnovy Khim. Tekhn., 2015, 47, 624. | |
dc.relation.references | [17] Gumnitsky J., AtamaniukV., Symak D.: Integr. Technol. ta Energozbererzennia, 2017, 4, 23. | |
dc.relation.references | [18] Sabadash V., Mylanyk O., Matsutska O., Gumnytsky J.: Chem. Chem. Technol., 2017, 11, 459. https://doi.org/10.23939/chcht11.04.459 | |
dc.relation.references | [19] Patil V., Joshi J., Sharma M.: Chem. Eng. Res. Des., 1984, 62, 247. https://doi.org/10.1002/cjce.5450620210 | |
dc.relation.references | [20] Wang Z., Zhou J., Zhu J. et al.: Huagong xuebao = SIESCJ., 2015, 66, 1001. | |
dc.relation.references | [21] Frikha N., Hmercha A., Gabsi S.: Can. J. Chem. Eng., 2014, 92, 1829. https://doi.org/10.1002/cjce.21986 | |
dc.relation.references | [22] Viten'ko T., Gumnitskii J.: Theor. Found. Chem. Eng., 2006, 40, 598. https://doi.org/10.1134/S0040579506060078 | |
dc.relation.references | [23] Gumnitsky J, Symak D., Nagurskyy O.: Naukovi praci ONAChT, 2015, 47, 130. | |
dc.relation.references | [24] Gumnitsky J., Yurym M., Venger L.: Visnyk NU ”Lvivska Politechnika”, 2003, 488, 220. | |
dc.relation.references | [25] Symak D., Atamaniuk V., Sklabinskyy V. et al.: Naukovyy Visnyk NLTU, 2018, 28, 117. | |
dc.relation.referencesen | [1] Zdanovskyi, A., Galurgia. Khimia, Leningrad 1972. | |
dc.relation.referencesen | [2] Akselrud G., Molczanov A., Rastvoreniye Tviordykh Veshczestv. Khimia, Moskva 1977. | |
dc.relation.referencesen | [3] Stankovic S., Moric I., Pavic A.,Vojnovic S. et al.:J. Serb. Chem. Soc., 2015, 80, 391. https://doi.org/10.2298/JSC140411097S | |
dc.relation.referencesen | [4] Okuniewski M., Ramjugernath D., Paramespri N., Domanska U.:J. Chem. Thermodyn., 2014, 77, 23. https://doi.org/10.1016/j.jct.2014.04.021 | |
dc.relation.referencesen | [5] Tully G., Hou G., Glen B., Chem. Eng. Data, 2016, 61, 594. https://doi.org/10.1021/acs.jced.5b00746 | |
dc.relation.referencesen | [6] Shvartsev B., Gelman D., Komissarov I., Epshtein A. et al., Chem. Phys. Chem., 2015, 16, 370. https://doi.org/10.1002/cphc.201402627 | |
dc.relation.referencesen | [7] Zou F., Zhuang W., Wu J. et al.:J. Chem.Themodyn., 2014, 77, 14. https://doi.org/10.1016/j.jct.2014.04.023 | |
dc.relation.referencesen | [8] Yu X., Shen Z., Sun Q. et al.:J. Chem. Eng. Data, 2016, 61, 1236. https://doi.org/10.1021/acs.jced.5b00880 | |
dc.relation.referencesen | [9] Zhao H., Chen J., Liu C. et al.:J. Chem. Eng. Data, 2015, 60, 3201. https://doi.org/10.1021/acs.jced.5b00417 | |
dc.relation.referencesen | [10] MacCarthy J., Nosrati A., Skinner W., Addai-Mensah J., Chem. Eng. Res. Des., 2014, 92, 2509. https://doi.org/10.1016/j.cherd.2014.02.020 | |
dc.relation.referencesen | [11] Huang X., Wang J., Hao H. et al., Fluid Phase Equilibria, 2015, 394, 148. https://doi.org/10.1016/j.fluid.2015.03.022 | |
dc.relation.referencesen | [12] Morgenstern L., Teor. Osnovy Khim. Tekhn., 2014, 48, 122. | |
dc.relation.referencesen | [13] Khacevycz O., Artus M., Kostiv I., Khim. Prom. Ukrainy, 2015, 3, 37. | |
dc.relation.referencesen | [14] Artus M., Kostiv I., Khim. Prom.Ukrainy, 2015, 6, 39. | |
dc.relation.referencesen | [15] Symak D., Atamaniuk V., Gumnitskyy Y., Chem. Chem. Technol., 2015, 9, 493. https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.referencesen | [16] Babenko Yu., Ivanov, E., Teor. Osnovy Khim. Tekhn., 2015, 47, 624. | |
dc.relation.referencesen | [17] Gumnitsky J., AtamaniukV., Symak D., Integr. Technol. ta Energozbererzennia, 2017, 4, 23. | |
dc.relation.referencesen | [18] Sabadash V., Mylanyk O., Matsutska O., Gumnytsky J., Chem. Chem. Technol., 2017, 11, 459. https://doi.org/10.23939/chcht11.04.459 | |
dc.relation.referencesen | [19] Patil V., Joshi J., Sharma M., Chem. Eng. Res. Des., 1984, 62, 247. https://doi.org/10.1002/cjce.5450620210 | |
dc.relation.referencesen | [20] Wang Z., Zhou J., Zhu J. et al., Huagong xuebao = SIESCJ., 2015, 66, 1001. | |
dc.relation.referencesen | [21] Frikha N., Hmercha A., Gabsi S., Can. J. Chem. Eng., 2014, 92, 1829. https://doi.org/10.1002/cjce.21986 | |
dc.relation.referencesen | [22] Viten'ko T., Gumnitskii J., Theor. Found. Chem. Eng., 2006, 40, 598. https://doi.org/10.1134/S0040579506060078 | |
dc.relation.referencesen | [23] Gumnitsky J, Symak D., Nagurskyy O., Naukovi praci ONAChT, 2015, 47, 130. | |
dc.relation.referencesen | [24] Gumnitsky J., Yurym M., Venger L., Visnyk NU "Lvivska Politechnika", 2003, 488, 220. | |
dc.relation.referencesen | [25] Symak D., Atamaniuk V., Sklabinskyy V. et al., Naukovyy Visnyk NLTU, 2018, 28, 117. | |
dc.relation.uri | https://doi.org/10.2298/JSC140411097S | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2014.04.021 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.5b00746 | |
dc.relation.uri | https://doi.org/10.1002/cphc.201402627 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2014.04.023 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.5b00880 | |
dc.relation.uri | https://doi.org/10.1021/acs.jced.5b00417 | |
dc.relation.uri | https://doi.org/10.1016/j.cherd.2014.02.020 | |
dc.relation.uri | https://doi.org/10.1016/j.fluid.2015.03.022 | |
dc.relation.uri | https://doi.org/10.23939/chcht09.04.493 | |
dc.relation.uri | https://doi.org/10.23939/chcht11.04.459 | |
dc.relation.uri | https://doi.org/10.1002/cjce.5450620210 | |
dc.relation.uri | https://doi.org/10.1002/cjce.21986 | |
dc.relation.uri | https://doi.org/10.1134/S0040579506060078 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Symak D., Sabadash V., Gumnitsky J., Hnativ Z., 2021 | |
dc.subject | розчинення | |
dc.subject | кінетика | |
dc.subject | масовіддача | |
dc.subject | коефіцієнт масовіддачі | |
dc.subject | перемішування | |
dc.subject | математична модель | |
dc.subject | dissolution | |
dc.subject | kinetics | |
dc.subject | mass transfer | |
dc.subject | mass transfer coefficient | |
dc.subject | mixing | |
dc.subject | mathematical model | |
dc.title | Kinetic Regularities and Mathematical Modelling of Potassium Chloride Dissolution | |
dc.title.alternative | Кінетичні закономірності та математичне моделювання розчинення калій хлориду | |
dc.type | Article |
Files
License bundle
1 - 1 of 1