Linear Hexane Isomerization Over Bimetallic Zeolite Catalysts
dc.citation.epage | 335 | |
dc.citation.issue | 3 | |
dc.citation.spage | 330 | |
dc.contributor.affiliation | V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine | |
dc.contributor.author | Patrylak, Lyubov | |
dc.contributor.author | Pertko, Oleksandra | |
dc.contributor.author | Voloshyna, Yuliya | |
dc.contributor.author | Yakovenko, Angela | |
dc.contributor.author | Povazhnyi, Volodymyr | |
dc.contributor.author | Melnychuk, Oleksandr | |
dc.contributor.author | Zlochevskyi, Kostyantyn | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-09T11:31:47Z | |
dc.date.available | 2024-01-09T11:31:47Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Проведено оцінювання активності та селективності в ізомеризації н-гексану біметалічних цеолітних каталізаторів, що окрім паладію містять перехідний метал нікель. Синтезовано біметалічні біфункціональні каталізатори ізомеризації лінійних алканів на основі водневої форми цеоліту MFI. Пористі властивості зразків досліджено методом низькотемпературної адсорбції/десорбції азоту, розміри металічної компоненти – ТЕМ, а каталітичні властивості – у мікроімпульсній ізомеризації н-гексану. Знайдено антибатну залежність температури максимального виходу ізомерів гексану від кількості нікелю у зразку за сталого вмісту паладію. Показано, що введення нікелю дає можливість понизити оптимальну температуру процесу з 598 до 523 К. | |
dc.description.abstract | The aim of this study was to evaluate the activity and selectivity in isomerization of n-hexane of bimetallic zeolite catalysts containing a nickel transition metal in addition to palladium. Bimetallic bifunctional linear alkane isomerization catalysts based on the hydrogen form of MFI zeolite have been synthesized. The porous properties of the samples were investigated by means of low-temperature nitrogen adsorption/desorption, the size of the metal component – by TEM, and the catalytic properties – in the micro-pulse isomerization of n-hexane. Antisymbatic correlation between the temperature of the maximum yield of hexane isomers and the amount of nickel in the sample was found for a stable palladium content. The introduction of nickel allows to reduce the optimum process temperature from 598 to 523 K. | |
dc.format.extent | 330-335 | |
dc.format.pages | 6 | |
dc.identifier.citation | Linear Hexane Isomerization Over Bimetallic Zeolite Catalysts / Lyubov Patrylak, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko, Volodymyr Povazhnyi, Oleksandr Melnychuk, Kostyantyn Zlochevskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 330–335. | |
dc.identifier.citationen | Linear Hexane Isomerization Over Bimetallic Zeolite Catalysts / Lyubov Patrylak, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko, Volodymyr Povazhnyi, Oleksandr Melnychuk, Kostyantyn Zlochevskyi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 15. — No 3. — P. 330–335. | |
dc.identifier.doi | doi.org/10.23939/chcht15.03.330 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60748 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 3 (15), 2021 | |
dc.relation.references | [1] Hidalgo J., Zbuzek M., Cerny R., Jisa P.: Central Europ. J. Chem., 2013, 12, 1. https://doi.org/10.2478/s11532-013-0354-9 | |
dc.relation.references | [2] Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F | |
dc.relation.references | [3] Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.references | [4] Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.references | [5] Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.references | [6] Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919. | |
dc.relation.references | [7] Dhar A., Vekariya R., Bhadja P.: Cogent Chemistry, 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.references | [8] Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107–108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.references | [9] Jordao M., Simoes V., Cardoso D.: Appl. Catal. A-Gen., 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.references | [10] Lima P., Garetto T., Cavalcante C. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.references | [11] Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.references | [12] Patrylak K., Patrylak L., Manza I., Taranookha O.: Petrol. Chem., 2001, 41, 383. | |
dc.relation.references | [13] Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.references | [14] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 | |
dc.relation.references | [15] Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. | |
dc.relation.references | [16] Cychosz K., Guillet-Nicolas R., García-Martínez J., Thommes M.: Chem. Soc. Rev., 2017, 46, 389. https://doi.org/10.1039/C6CS00391E | |
dc.relation.references | [17] Thommes M.: Chemie Ingenieur Technik, 2010, 82, 1059. https://doi.org/10.1002/cite.201000064 | |
dc.relation.references | [18] Hernández M., Rojas F., Lara V.: J. Porous Mater., 2000, 7, 443. https://doi.org/10.1023/A:1009662408173 | |
dc.relation.references | [19] Sing S., Williams R.: Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.references | [20] Wan W., Su J., Zou X., Willhammar T.: Inorg. Chem. Front., 2018, 5, 2836. https://doi.org/10.1039/C8QI00806J | |
dc.relation.references | [21] Juneau M., Liu R., Peng Y. et al.: Chem. Cat. Chem., 2020, 12, 1826. https://doi.org/10.1002/cctc.201902039 | |
dc.relation.references | [22] Peron D., Zholobenko V., de la Rocha M. et al.: J. Mater. Sci., 2019, 54, 5399. https://doi.org/10.1007/s10853-018-03250-59 | |
dc.relation.references | [23] Mazaheri O., Kalbasi R.: RSC Adv., 2015, 5, 34398. https://doi.org/10.1039/C5RA02349A | |
dc.relation.references | [24] Patrylak L., Krylova M., Pertko O. et al.: Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.references | [25] Voloshyna Yu., Pertko O., Krylova M. et al.: Kataliz ta Naftohimia, 2019, 28, 20. https://doi.org/10.15407/kataliz2019.28.020 | |
dc.relation.references | [26] Voloshyna Yu., Pertko O., Patrylak L., Yakovenko A.: Voprosy Khimii і Khimicheskoi Technologii, 2020, 6, 26. https://doi.org/10.32434/0321-4095-2020-133-6-26-32 | |
dc.relation.references | [27] Karakoulia S., Heracleous E., Lappas A.: Catal. Today, 2019, in press. https://doi.org/10.1016/j.cattod.2019.04.072 | |
dc.relation.references | [28] Bhavani A., Pandurangan A.: J. Mol. Catal. A-Chem., 2007, 267, 209. https://doi.org/10.1016/j.molcata.2006.11.044 | |
dc.relation.references | [29] Barsi F., Cardoso D.: Braz. J. Chem. Eng., 2009, 26, 353. https://doi.org/10.1590/S0104-66322009000200012 | |
dc.relation.references | [30] Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 | |
dc.relation.referencesen | [1] Hidalgo J., Zbuzek M., Cerny R., Jisa P., Central Europ. J. Chem., 2013, 12, 1. https://doi.org/10.2478/s11532-013-0354-9 | |
dc.relation.referencesen | [2] Primo A., Garcia H., Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/P.3CS60394F | |
dc.relation.referencesen | [3] Liu S., Ren J., Zhang H. et al., J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.referencesen | [4] Dhar A., Vekariya R., Sharma P., Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.referencesen | [5] Izutsu Y., Oku Y., Hidaka Y. et al., Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.referencesen | [6] Ghouri A., Usman M., J. Chem. Soc. Pak., 2017, 39, 919. | |
dc.relation.referencesen | [7] Dhar A., Vekariya R., Bhadja P., Cogent Chemistry, 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.referencesen | [8] Yoshioka C., Garetto T., Cardoso D., Catal. Today, 2005, 107–108, 693. https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.referencesen | [9] Jordao M., Simoes V., Cardoso D., Appl. Catal. A-Gen., 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.referencesen | [10] Lima P., Garetto T., Cavalcante C. et al., Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.referencesen | [11] Martins G., dos Santos E., Rodrigues M. et al., Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.referencesen | [12] Patrylak K., Patrylak L., Manza I., Taranookha O., Petrol. Chem., 2001, 41, 383. | |
dc.relation.referencesen | [13] Patrylak L., Krylova M., Pertko O. et al., J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.referencesen | [14] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al., Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376 | |
dc.relation.referencesen | [15] Rouquerol F., Rouquerol J., Sing K., Adsorption by Powders and Porous solids. Principles, Methodology and Applications. Academic Press, San Diego 1999. | |
dc.relation.referencesen | [16] Cychosz K., Guillet-Nicolas R., García-Martínez J., Thommes M., Chem. Soc. Rev., 2017, 46, 389. https://doi.org/10.1039/P.6CS00391E | |
dc.relation.referencesen | [17] Thommes M., Chemie Ingenieur Technik, 2010, 82, 1059. https://doi.org/10.1002/cite.201000064 | |
dc.relation.referencesen | [18] Hernández M., Rojas F., Lara V., J. Porous Mater., 2000, 7, 443. https://doi.org/10.1023/A:1009662408173 | |
dc.relation.referencesen | [19] Sing S., Williams R., Adsorpt. Sci. Technol., 2004, 22, 773. https://doi.org/10.1260/0263617053499032 | |
dc.relation.referencesen | [20] Wan W., Su J., Zou X., Willhammar T., Inorg. Chem. Front., 2018, 5, 2836. https://doi.org/10.1039/P.8QI00806J | |
dc.relation.referencesen | [21] Juneau M., Liu R., Peng Y. et al., Chem. Cat. Chem., 2020, 12, 1826. https://doi.org/10.1002/cctc.201902039 | |
dc.relation.referencesen | [22] Peron D., Zholobenko V., de la Rocha M. et al., J. Mater. Sci., 2019, 54, 5399. https://doi.org/10.1007/s10853-018-03250-59 | |
dc.relation.referencesen | [23] Mazaheri O., Kalbasi R., RSC Adv., 2015, 5, 34398. https://doi.org/10.1039/P.5RA02349A | |
dc.relation.referencesen | [24] Patrylak L., Krylova M., Pertko O. et al., Chem. Chem. Technol., 2020, 14, 234. https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.referencesen | [25] Voloshyna Yu., Pertko O., Krylova M. et al., Kataliz ta Naftohimia, 2019, 28, 20. https://doi.org/10.15407/kataliz2019.28.020 | |
dc.relation.referencesen | [26] Voloshyna Yu., Pertko O., Patrylak L., Yakovenko A., Voprosy Khimii i Khimicheskoi Technologii, 2020, 6, 26. https://doi.org/10.32434/0321-4095-2020-133-6-26-32 | |
dc.relation.referencesen | [27] Karakoulia S., Heracleous E., Lappas A., Catal. Today, 2019, in press. https://doi.org/10.1016/j.cattod.2019.04.072 | |
dc.relation.referencesen | [28] Bhavani A., Pandurangan A., J. Mol. Catal. A-Chem., 2007, 267, 209. https://doi.org/10.1016/j.molcata.2006.11.044 | |
dc.relation.referencesen | [29] Barsi F., Cardoso D., Braz. J. Chem. Eng., 2009, 26, 353. https://doi.org/10.1590/S0104-66322009000200012 | |
dc.relation.referencesen | [30] Patrylak L., Manza I., Vypirailenko V. et al., Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977 | |
dc.relation.uri | https://doi.org/10.2478/s11532-013-0354-9 | |
dc.relation.uri | https://doi.org/10.1039/C3CS60394F | |
dc.relation.uri | https://doi.org/10.1016/j.jcat.2015.12.009 | |
dc.relation.uri | https://doi.org/10.1016/j.petlm.2017.02.001 | |
dc.relation.uri | https://doi.org/10.1007/s10562-013-0973-y | |
dc.relation.uri | https://doi.org/10.1080/23312009.2018.1514686 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2005.07.056 | |
dc.relation.uri | https://doi.org/10.1016/j.apcata.2006.09.039 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2011.02.031 | |
dc.relation.uri | https://doi.org/10.4236/mrc.2013.24017 | |
dc.relation.uri | https://doi.org/10.1007/s10934-018-0685-1 | |
dc.relation.uri | https://doi.org/10.1260/0263617011494376 | |
dc.relation.uri | https://doi.org/10.1039/C6CS00391E | |
dc.relation.uri | https://doi.org/10.1002/cite.201000064 | |
dc.relation.uri | https://doi.org/10.1023/A:1009662408173 | |
dc.relation.uri | https://doi.org/10.1260/0263617053499032 | |
dc.relation.uri | https://doi.org/10.1039/C8QI00806J | |
dc.relation.uri | https://doi.org/10.1002/cctc.201902039 | |
dc.relation.uri | https://doi.org/10.1007/s10853-018-03250-59 | |
dc.relation.uri | https://doi.org/10.1039/C5RA02349A | |
dc.relation.uri | https://doi.org/10.23939/chcht14.02.234 | |
dc.relation.uri | https://doi.org/10.15407/kataliz2019.28.020 | |
dc.relation.uri | https://doi.org/10.32434/0321-4095-2020-133-6-26-32 | |
dc.relation.uri | https://doi.org/10.1016/j.cattod.2019.04.072 | |
dc.relation.uri | https://doi.org/10.1016/j.molcata.2006.11.044 | |
dc.relation.uri | https://doi.org/10.1590/S0104-66322009000200012 | |
dc.relation.uri | https://doi.org/10.1023/A:1025729530977 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Patrylak L., Pertko O., Voloshyna Y., Yakovenko A., Povazhnyi V., Melnychuk O., Zlochevskyi K., 2021 | |
dc.subject | пентасил | |
dc.subject | нікель | |
dc.subject | паладій | |
dc.subject | ізомеризація гексану | |
dc.subject | pentasil zeolite | |
dc.subject | nickel | |
dc.subject | palladium | |
dc.subject | hexane isomerization | |
dc.title | Linear Hexane Isomerization Over Bimetallic Zeolite Catalysts | |
dc.title.alternative | Ізомеризація лінійного гексану на біметалічних цеолітних каталізаторах | |
dc.type | Article |
Files
License bundle
1 - 1 of 1