Revolutionizing supermarket services with hierarchical association rule mining
dc.citation.epage | 556 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 547 | |
dc.contributor.affiliation | Університет Хасана ІІ Касабланки | |
dc.contributor.affiliation | Hassan II of Casablanca University | |
dc.contributor.author | Мефтах, М. | |
dc.contributor.author | Оунасер, С. | |
dc.contributor.author | Ардчір, С. | |
dc.contributor.author | Ель Газуані, М. | |
dc.contributor.author | Аззуазі, М. | |
dc.contributor.author | Meftah, M. | |
dc.contributor.author | Ounacer, S. | |
dc.contributor.author | Ardchir, S. | |
dc.contributor.author | El Ghazouani, M. | |
dc.contributor.author | Azzouazi, M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-04T10:28:13Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Використання методів аналізу правил асоціації стало центром уваги багатьох дослідників, які прагнуть краще зрозуміти поведінку споживачів. Аналізуючи взаємозв’язки між продуктами та їх розміщенням у проходах, можна отримати цінну інформацію про фактори, які впливають на збереження продуктів у великомасштабних середовищах розповсюдження. Цей підхід може покращити процеси прийняття рішень і оптимізувати результати збереження продуктів, незважаючи на деякі обмеження в якості доступних даних. Крім того, було прийнято гібридний підхід включення транзакцій від клієнтів, які беруть участь у програмі лояльності, щоб заохотити широкомасштабні розповсюдження та краще зрозуміти поведінку клієнтів і покращити їхні стратегії купівлі. Метою цього дослідження є сприяння узгодженості між реальним і віртуальним уявленнями про поведінку клієнтів, що в кінцевому підсумку призведе до покращення результатів купівлі для великомасштабних дистрибуцій. | |
dc.description.abstract | The use of association rule mining techniques has become a focal point for many researchers seeking a better understanding of consumer behavior. By analyzing the relationships between products and their placement in aisles, valuable insights can be gained into the factors that influence product preservation in large-scale distribution environments. This approach has the potential to inform better decision-making processes and optimize product preservation outcomes, despite some limitations in the quality of the data available. Additionally, a hybridization approach was adopted by incorporating transactions from clients participating in a loyalty program to encourage large-scale distributions to gain a better understanding of customer behavior and improve their purchasing strategies. The goal of this research is to promote consistency between the real-world and virtual representations of customer behavior, ultimately leading to improved purchasing outcomes for large-scale distributions. | |
dc.format.extent | 547-556 | |
dc.format.pages | 10 | |
dc.identifier.citation | Revolutionizing supermarket services with hierarchical association rule mining / M. Meftah, S. Ounacer, S. Ardchir, M. El Ghazouani, M. Azzouazi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 547–556. | |
dc.identifier.citationen | Revolutionizing supermarket services with hierarchical association rule mining / M. Meftah, S. Ounacer, S. Ardchir, M. El Ghazouani, M. Azzouazi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 547–556. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.02.547 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63416 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 2 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (10), 2023 | |
dc.relation.references | [1] Agrawal R., Imieli´nski T., Swami A. Mining association rules between sets of items in large databases. ACM SIGMOD Record. 22 (2), 207–216 (1993). | |
dc.relation.references | [2] Kuang H., Qin R., He M., He X., Duan R., Guo C., Meng X. An Association Rules-Based Method for Outliers Cleaning of Measurement Data in the Distribution Network. Frontiers in Energy Research. 9, 730058 (2021). | |
dc.relation.references | [3] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). 487–499 (1994). | |
dc.relation.references | [4] Liu B., Hsu W., Ma Y. Integrating classification and association rule mining. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD ’98). 80–86 (1998). | |
dc.relation.references | [5] Holt J. D., Chung S.M. Efficient mining of association rules in text databases. Proceedings of the Eighth International Conference on Information and Knowledge Management (CIKM ’99). 234–242 (1999). | |
dc.relation.references | [6] Chen G., Wei Q. Fuzzy association rules and the extended mining algorithms. Information Sciences. 147 (1–4), 201–228 (2002). | |
dc.relation.references | [7] Wu X., Zhang C., Zhang S. Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems. 22 (3), 381–405 (2004). | |
dc.relation.references | [8] Yang X. Y., Liu Z., Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. The 3rd International Conference on Information Sciences and Interaction Sciences. 99–102 (2010). | |
dc.relation.references | [9] Fournier-Viger P., Wu C. W., Tseng V. S. Mining Top-K Association Rules. In: Kosseim L., Inkpen D. (eds.) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science, vol. 7310 (2012). | |
dc.relation.references | [10] Sahoo J., Das A., Goswami A. An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications. 42 (13), 5754–5778 (2015). | |
dc.relation.references | [11] Wu J. M.-T., Zhan J., Chobe S. Mining Association rules for Low-Frequency itemsets. PLOS ONE. 13 (7), e0198066 (2018). | |
dc.relation.references | [12] Unvan Y. Market basket analysis with association rules. Communications in Statistics – Theory and Methods. 50 (7), 1615–1628 (2020). | |
dc.relation.references | [13] Antonello F., Baraldi P., Zio E., et al. A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures. Environment Systems and Decisions. 42, 436–449 (2022). | |
dc.relation.references | 14] Houtsma M., Swami A. Set-oriented mining for association rules in relational databases. Proceedings of the Eleventh International Conference on Data Engineering. 25–33 (1995). | |
dc.relation.references | [15] Park J. S., Chen M. S., Yu P. S. An effective hash-based algorithm for mining association rules. SIGMOD Rec. 24 (2), 175–186 (1995). | |
dc.relation.references | [16] Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). 1–12 (2000). | |
dc.relation.references | [17] Tsay Y.-J., Chiang J.-Y. CBAR: an efficient method for mining association rules. Knowledge-Based Systems. 18 (2–3), 99–105 (2005). | |
dc.relation.references | [18] Instacart Market Basket Analysis. https://www.kaggle.com/competitions/instacart-market-basket-analysis/data. | |
dc.relation.referencesen | [1] Agrawal R., Imieli´nski T., Swami A. Mining association rules between sets of items in large databases. ACM SIGMOD Record. 22 (2), 207–216 (1993). | |
dc.relation.referencesen | [2] Kuang H., Qin R., He M., He X., Duan R., Guo C., Meng X. An Association Rules-Based Method for Outliers Cleaning of Measurement Data in the Distribution Network. Frontiers in Energy Research. 9, 730058 (2021). | |
dc.relation.referencesen | [3] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). 487–499 (1994). | |
dc.relation.referencesen | [4] Liu B., Hsu W., Ma Y. Integrating classification and association rule mining. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD ’98). 80–86 (1998). | |
dc.relation.referencesen | [5] Holt J. D., Chung S.M. Efficient mining of association rules in text databases. Proceedings of the Eighth International Conference on Information and Knowledge Management (CIKM ’99). 234–242 (1999). | |
dc.relation.referencesen | [6] Chen G., Wei Q. Fuzzy association rules and the extended mining algorithms. Information Sciences. 147 (1–4), 201–228 (2002). | |
dc.relation.referencesen | [7] Wu X., Zhang C., Zhang S. Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems. 22 (3), 381–405 (2004). | |
dc.relation.referencesen | [8] Yang X. Y., Liu Z., Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. The 3rd International Conference on Information Sciences and Interaction Sciences. 99–102 (2010). | |
dc.relation.referencesen | [9] Fournier-Viger P., Wu C. W., Tseng V. S. Mining Top-K Association Rules. In: Kosseim L., Inkpen D. (eds.) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science, vol. 7310 (2012). | |
dc.relation.referencesen | [10] Sahoo J., Das A., Goswami A. An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications. 42 (13), 5754–5778 (2015). | |
dc.relation.referencesen | [11] Wu J. M.-T., Zhan J., Chobe S. Mining Association rules for Low-Frequency itemsets. PLOS ONE. 13 (7), e0198066 (2018). | |
dc.relation.referencesen | [12] Unvan Y. Market basket analysis with association rules. Communications in Statistics – Theory and Methods. 50 (7), 1615–1628 (2020). | |
dc.relation.referencesen | [13] Antonello F., Baraldi P., Zio E., et al. A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures. Environment Systems and Decisions. 42, 436–449 (2022). | |
dc.relation.referencesen | 14] Houtsma M., Swami A. Set-oriented mining for association rules in relational databases. Proceedings of the Eleventh International Conference on Data Engineering. 25–33 (1995). | |
dc.relation.referencesen | [15] Park J. S., Chen M. S., Yu P. S. An effective hash-based algorithm for mining association rules. SIGMOD Rec. 24 (2), 175–186 (1995). | |
dc.relation.referencesen | [16] Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). 1–12 (2000). | |
dc.relation.referencesen | [17] Tsay Y.-J., Chiang J.-Y. CBAR: an efficient method for mining association rules. Knowledge-Based Systems. 18 (2–3), 99–105 (2005). | |
dc.relation.referencesen | [18] Instacart Market Basket Analysis. https://www.kaggle.com/competitions/instacart-market-basket-analysis/data. | |
dc.relation.uri | https://www.kaggle.com/competitions/instacart-market-basket-analysis/data | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | збереження продукції | |
dc.subject | гібридний підхід | |
dc.subject | програма лояльності | |
dc.subject | правила асоціації | |
dc.subject | апріорі | |
dc.subject | широкомасштабне поширення | |
dc.subject | product preservation | |
dc.subject | hybridation approach | |
dc.subject | loyalty program | |
dc.subject | association rules | |
dc.subject | apriori | |
dc.subject | large-scale distribution | |
dc.title | Revolutionizing supermarket services with hierarchical association rule mining | |
dc.title.alternative | Революція послуг супермаркетів за допомогою аналізу правил ієрархічної асоціації | |
dc.type | Article |
Files
License bundle
1 - 1 of 1