Revolutionizing supermarket services with hierarchical association rule mining

dc.citation.epage556
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage547
dc.contributor.affiliationУніверситет Хасана ІІ Касабланки
dc.contributor.affiliationHassan II of Casablanca University
dc.contributor.authorМефтах, М.
dc.contributor.authorОунасер, С.
dc.contributor.authorАрдчір, С.
dc.contributor.authorЕль Газуані, М.
dc.contributor.authorАззуазі, М.
dc.contributor.authorMeftah, M.
dc.contributor.authorOunacer, S.
dc.contributor.authorArdchir, S.
dc.contributor.authorEl Ghazouani, M.
dc.contributor.authorAzzouazi, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T10:28:13Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractВикористання методів аналізу правил асоціації стало центром уваги багатьох дослідників, які прагнуть краще зрозуміти поведінку споживачів. Аналізуючи взаємозв’язки між продуктами та їх розміщенням у проходах, можна отримати цінну інформацію про фактори, які впливають на збереження продуктів у великомасштабних середовищах розповсюдження. Цей підхід може покращити процеси прийняття рішень і оптимізувати результати збереження продуктів, незважаючи на деякі обмеження в якості доступних даних. Крім того, було прийнято гібридний підхід включення транзакцій від клієнтів, які беруть участь у програмі лояльності, щоб заохотити широкомасштабні розповсюдження та краще зрозуміти поведінку клієнтів і покращити їхні стратегії купівлі. Метою цього дослідження є сприяння узгодженості між реальним і віртуальним уявленнями про поведінку клієнтів, що в кінцевому підсумку призведе до покращення результатів купівлі для великомасштабних дистрибуцій.
dc.description.abstractThe use of association rule mining techniques has become a focal point for many researchers seeking a better understanding of consumer behavior. By analyzing the relationships between products and their placement in aisles, valuable insights can be gained into the factors that influence product preservation in large-scale distribution environments. This approach has the potential to inform better decision-making processes and optimize product preservation outcomes, despite some limitations in the quality of the data available. Additionally, a hybridization approach was adopted by incorporating transactions from clients participating in a loyalty program to encourage large-scale distributions to gain a better understanding of customer behavior and improve their purchasing strategies. The goal of this research is to promote consistency between the real-world and virtual representations of customer behavior, ultimately leading to improved purchasing outcomes for large-scale distributions.
dc.format.extent547-556
dc.format.pages10
dc.identifier.citationRevolutionizing supermarket services with hierarchical association rule mining / M. Meftah, S. Ounacer, S. Ardchir, M. El Ghazouani, M. Azzouazi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 547–556.
dc.identifier.citationenRevolutionizing supermarket services with hierarchical association rule mining / M. Meftah, S. Ounacer, S. Ardchir, M. El Ghazouani, M. Azzouazi // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 10. — No 2. — P. 547–556.
dc.identifier.doidoi.org/10.23939/mmc2023.02.547
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63416
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 2 (10), 2023
dc.relation.references[1] Agrawal R., Imieli´nski T., Swami A. Mining association rules between sets of items in large databases. ACM SIGMOD Record. 22 (2), 207–216 (1993).
dc.relation.references[2] Kuang H., Qin R., He M., He X., Duan R., Guo C., Meng X. An Association Rules-Based Method for Outliers Cleaning of Measurement Data in the Distribution Network. Frontiers in Energy Research. 9, 730058 (2021).
dc.relation.references[3] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). 487–499 (1994).
dc.relation.references[4] Liu B., Hsu W., Ma Y. Integrating classification and association rule mining. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD ’98). 80–86 (1998).
dc.relation.references[5] Holt J. D., Chung S.M. Efficient mining of association rules in text databases. Proceedings of the Eighth International Conference on Information and Knowledge Management (CIKM ’99). 234–242 (1999).
dc.relation.references[6] Chen G., Wei Q. Fuzzy association rules and the extended mining algorithms. Information Sciences. 147 (1–4), 201–228 (2002).
dc.relation.references[7] Wu X., Zhang C., Zhang S. Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems. 22 (3), 381–405 (2004).
dc.relation.references[8] Yang X. Y., Liu Z., Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. The 3rd International Conference on Information Sciences and Interaction Sciences. 99–102 (2010).
dc.relation.references[9] Fournier-Viger P., Wu C. W., Tseng V. S. Mining Top-K Association Rules. In: Kosseim L., Inkpen D. (eds.) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science, vol. 7310 (2012).
dc.relation.references[10] Sahoo J., Das A., Goswami A. An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications. 42 (13), 5754–5778 (2015).
dc.relation.references[11] Wu J. M.-T., Zhan J., Chobe S. Mining Association rules for Low-Frequency itemsets. PLOS ONE. 13 (7), e0198066 (2018).
dc.relation.references[12] Unvan Y. Market basket analysis with association rules. Communications in Statistics – Theory and Methods. 50 (7), 1615–1628 (2020).
dc.relation.references[13] Antonello F., Baraldi P., Zio E., et al. A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures. Environment Systems and Decisions. 42, 436–449 (2022).
dc.relation.references14] Houtsma M., Swami A. Set-oriented mining for association rules in relational databases. Proceedings of the Eleventh International Conference on Data Engineering. 25–33 (1995).
dc.relation.references[15] Park J. S., Chen M. S., Yu P. S. An effective hash-based algorithm for mining association rules. SIGMOD Rec. 24 (2), 175–186 (1995).
dc.relation.references[16] Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). 1–12 (2000).
dc.relation.references[17] Tsay Y.-J., Chiang J.-Y. CBAR: an efficient method for mining association rules. Knowledge-Based Systems. 18 (2–3), 99–105 (2005).
dc.relation.references[18] Instacart Market Basket Analysis. https://www.kaggle.com/competitions/instacart-market-basket-analysis/data.
dc.relation.referencesen[1] Agrawal R., Imieli´nski T., Swami A. Mining association rules between sets of items in large databases. ACM SIGMOD Record. 22 (2), 207–216 (1993).
dc.relation.referencesen[2] Kuang H., Qin R., He M., He X., Duan R., Guo C., Meng X. An Association Rules-Based Method for Outliers Cleaning of Measurement Data in the Distribution Network. Frontiers in Energy Research. 9, 730058 (2021).
dc.relation.referencesen[3] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules in Large Databases. Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). 487–499 (1994).
dc.relation.referencesen[4] Liu B., Hsu W., Ma Y. Integrating classification and association rule mining. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD ’98). 80–86 (1998).
dc.relation.referencesen[5] Holt J. D., Chung S.M. Efficient mining of association rules in text databases. Proceedings of the Eighth International Conference on Information and Knowledge Management (CIKM ’99). 234–242 (1999).
dc.relation.referencesen[6] Chen G., Wei Q. Fuzzy association rules and the extended mining algorithms. Information Sciences. 147 (1–4), 201–228 (2002).
dc.relation.referencesen[7] Wu X., Zhang C., Zhang S. Efficient mining of both positive and negative association rules. ACM Transactions on Information Systems. 22 (3), 381–405 (2004).
dc.relation.referencesen[8] Yang X. Y., Liu Z., Fu Y. MapReduce as a programming model for association rules algorithm on Hadoop. The 3rd International Conference on Information Sciences and Interaction Sciences. 99–102 (2010).
dc.relation.referencesen[9] Fournier-Viger P., Wu C. W., Tseng V. S. Mining Top-K Association Rules. In: Kosseim L., Inkpen D. (eds.) Advances in Artificial Intelligence. Canadian AI 2012. Lecture Notes in Computer Science, vol. 7310 (2012).
dc.relation.referencesen[10] Sahoo J., Das A., Goswami A. An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications. 42 (13), 5754–5778 (2015).
dc.relation.referencesen[11] Wu J. M.-T., Zhan J., Chobe S. Mining Association rules for Low-Frequency itemsets. PLOS ONE. 13 (7), e0198066 (2018).
dc.relation.referencesen[12] Unvan Y. Market basket analysis with association rules. Communications in Statistics – Theory and Methods. 50 (7), 1615–1628 (2020).
dc.relation.referencesen[13] Antonello F., Baraldi P., Zio E., et al. A Novel Metric to Evaluate the Association Rules for Identification of Functional Dependencies in Complex Technical Infrastructures. Environment Systems and Decisions. 42, 436–449 (2022).
dc.relation.referencesen14] Houtsma M., Swami A. Set-oriented mining for association rules in relational databases. Proceedings of the Eleventh International Conference on Data Engineering. 25–33 (1995).
dc.relation.referencesen[15] Park J. S., Chen M. S., Yu P. S. An effective hash-based algorithm for mining association rules. SIGMOD Rec. 24 (2), 175–186 (1995).
dc.relation.referencesen[16] Han J., Pei J., Yin Y. Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD ’00). 1–12 (2000).
dc.relation.referencesen[17] Tsay Y.-J., Chiang J.-Y. CBAR: an efficient method for mining association rules. Knowledge-Based Systems. 18 (2–3), 99–105 (2005).
dc.relation.referencesen[18] Instacart Market Basket Analysis. https://www.kaggle.com/competitions/instacart-market-basket-analysis/data.
dc.relation.urihttps://www.kaggle.com/competitions/instacart-market-basket-analysis/data
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectзбереження продукції
dc.subjectгібридний підхід
dc.subjectпрограма лояльності
dc.subjectправила асоціації
dc.subjectапріорі
dc.subjectширокомасштабне поширення
dc.subjectproduct preservation
dc.subjecthybridation approach
dc.subjectloyalty program
dc.subjectassociation rules
dc.subjectapriori
dc.subjectlarge-scale distribution
dc.titleRevolutionizing supermarket services with hierarchical association rule mining
dc.title.alternativeРеволюція послуг супермаркетів за допомогою аналізу правил ієрархічної асоціації
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n2_Meftah_M-Revolutionizing_supermarket_547-556.pdf
Size:
901.61 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n2_Meftah_M-Revolutionizing_supermarket_547-556__COVER.png
Size:
454.29 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: