Investigation of drying the porous wood of a cylindrical shape

dc.citation.epage415
dc.citation.issue2
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage399
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГайвась, Б. І.
dc.contributor.authorДмитрук, В. А.
dc.contributor.authorGayvas, B. I.
dc.contributor.authorDmytruk, V. A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-04T11:14:24Z
dc.date.created2022-02-28
dc.date.issued2022-02-28
dc.description.abstractУ представленому дослідженні побудовано математичну модель сушіння пористого бруса круглого перерізу під дією конвективно-теплового нестаціонарного потоку сушильного агента. При розв’язуванні задачі капілярно-пористу структуру бруса описано у термінах квазіоднорідного середовища з ефективними коефіцієнтами, які вибрані так, щоб розв’язок в однорідному середовищі збігався з розв’язком у пористому середовищі. Вплив пористої структури враховано шляхом введення в рівняння Стефана–Максвелла ефективних бінарних коефіцієнтів взаємодії. Проблема взаємного розподілу фаз вирішена з використанням принципу локальної фазової рівноваги. Приведені властивості матеріалу (теплоємність, густина, теплопровідність) вважаються функціями пористості матеріалу, а також густини та теплоємності компонентів тіла. Отримано розв’язки для визначення температури, вологості, густини пари і тиску пари в брусі в довільний момент часу сушіння в будь-якій координатній точці радіуса, термомеханічних характеристик матеріалу і параметрів сушильного агента.
dc.description.abstractIn the presented study, the mathematical model for drying the porous timber beam of a circular cross-section under the action of a convective-heat nonstationary flow of the drying agent is constructed. When solving the problem, a capillary-porous structure of the beam is described in terms of a quasi-homogeneous medium with effective coefficients, which are chosen so that the solution in a homogeneous medium coincides with the solution in the porous medium. The influence of the porous structure is taken into account by introducing into the Stefan–Maxwell equation the effective binary interaction coefficients. The problem of mutual phase distribution is solved using the principle of local phase equilibrium. The given properties of the material (heat capacity, density, thermal conductivity) are considered to be functions of the porosity of the material as well as densities and heat capacities of body components. The solution is obtained for determining the temperature in the beam at an arbitrary time of drying at any coordinate point of the radius, thermomechanical characteristics of the material, and the parameters of the drying agent.
dc.format.extent399-415
dc.format.pages17
dc.identifier.citationGayvas B. I. Investigation of drying the porous wood of a cylindrical shape / B. I. Gayvas, V. A. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 399–415.
dc.identifier.citationenGayvas B. I. Investigation of drying the porous wood of a cylindrical shape / B. I. Gayvas, V. A. Dmytruk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 9. — No 2. — P. 399–415.
dc.identifier.doidoi.org/10.23939/mmc2022.02.399
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63440
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 2 (9), 2022
dc.relation.ispartofMathematical Modeling and Computing, 2 (9), 2022
dc.relation.references[1] Chojnacka K., Mikula K., Izydorczyk G., Skrzypczak D, Witek-Krowiak A., Moustakas K., Ludwig W., Kulazynski M. Improvements in drying technologies – Efficient solutions for cleaner production with higher energy efficiency and reduced emission. Journal of Cleaner Production. 320, 128706 (2021).
dc.relation.references[2] Thai Vu H., Tsotsas E. Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation. International Journal of Chemical Engineering. 2018, 9456418 (2018).
dc.relation.references[3] Xu P., Sasmito A. P., Mujumdar A. S. (Eds.). Heat and Mass Transfer in Drying of Porous Media (1st ed.). CRC Press (2019).
dc.relation.references[4] Shubin G. S. Drying and heat treatment of wood. Moscow, Lesnaya promyshlennost (1990), (in Russian).
dc.relation.references[5] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–141 (1992).
dc.relation.references[6] Sokolovskyy Ya. I., Boretska I. B., Gayvas B. I., Kroshnyy I. M., Nechepurenko A. V. Mathematical modeling of convection drying process of wood taking into account the boundary of phase transitions. Mathematical Modeling and Computing. 8 (4), 830–841 (2021).
dc.relation.references[7] Hayvas B., Dmytruk V. Torskyy A., Dmytruk A. On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.references[8] Hachkevych O., Hachkevych M., Torskyy A., Dmytruk V. Mathematical model of optimization of annealing regimes by the stress state for heat-sensitive glass elements of structures. Mathematical Modeling and Computing. 5 (2), 134–146 (2018).
dc.relation.references[9] Sokolovskyy Y., Boretska I., Kroshnyy I., Gayvas B. Mathematical models and analysis of the heatmasstransfer in anisotropic materials taking into account the boundaries of phase transition. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 28–33 (2019).
dc.relation.references[10] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7 (2), 400–409 (2020).
dc.relation.references[11] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6 (1), 58–68 (2019).
dc.relation.references[12] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6 (2), 289–296 (2019).
dc.relation.references[13] Gayvas B. I., Dmytruk V. A., Semerak M. M., Rymar T. I. Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing. 8 (2), 150–156 (2021).
dc.relation.references[14] Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Oxford Pergamon Press. International series of monographs in pure and applied mathematics. 39 (1963).
dc.relation.references[15] Musii R., Melnyk N., Dmytruk V. Investigation of properties of contact connector of bimetallic hollow cylinder under the influence of electromagnetic pulse. Mathematical Modeling and Computing. 5 (2), 193–200 (2018).
dc.relation.references[16] Lenyuk M. P., Mikhalevska G. I. Integral transformations of the Kontorovich–Lebedev type. Chernivtsi, Prut (2002), (in Ukrainian).
dc.relation.references[17] Gradshteyn I., Ryzhik I. Table of Integrals, Series and Products. Elsevier/Academic Press, Amsterdam, Seventh edition (2007).
dc.relation.references[18] Prudnikov A. P., Brychkov Y. A., Marichev O. I. Integrals and Series: Direct Laplace Transforms (1st ed.). Routledge (1992).
dc.relation.references[19] Simpson W., TenWolde A. Physical properties and moisture relations of wood. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113: Pages 3.1–3.24 (1999).
dc.relation.referencesen[1] Chojnacka K., Mikula K., Izydorczyk G., Skrzypczak D, Witek-Krowiak A., Moustakas K., Ludwig W., Kulazynski M. Improvements in drying technologies – Efficient solutions for cleaner production with higher energy efficiency and reduced emission. Journal of Cleaner Production. 320, 128706 (2021).
dc.relation.referencesen[2] Thai Vu H., Tsotsas E. Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation. International Journal of Chemical Engineering. 2018, 9456418 (2018).
dc.relation.referencesen[3] Xu P., Sasmito A. P., Mujumdar A. S. (Eds.). Heat and Mass Transfer in Drying of Porous Media (1st ed.). CRC Press (2019).
dc.relation.referencesen[4] Shubin G. S. Drying and heat treatment of wood. Moscow, Lesnaya promyshlennost (1990), (in Russian).
dc.relation.referencesen[5] Ugolev B., Skuratov N. Modeling the wood drying process. Collection of scientific works of MLTI. 247, 133–141 (1992).
dc.relation.referencesen[6] Sokolovskyy Ya. I., Boretska I. B., Gayvas B. I., Kroshnyy I. M., Nechepurenko A. V. Mathematical modeling of convection drying process of wood taking into account the boundary of phase transitions. Mathematical Modeling and Computing. 8 (4), 830–841 (2021).
dc.relation.referencesen[7] Hayvas B., Dmytruk V. Torskyy A., Dmytruk A. On methods of mathematical modeling of drying dispersed materials. Mathematical Modeling and Computing. 4 (2), 139–147 (2017).
dc.relation.referencesen[8] Hachkevych O., Hachkevych M., Torskyy A., Dmytruk V. Mathematical model of optimization of annealing regimes by the stress state for heat-sensitive glass elements of structures. Mathematical Modeling and Computing. 5 (2), 134–146 (2018).
dc.relation.referencesen[9] Sokolovskyy Y., Boretska I., Kroshnyy I., Gayvas B. Mathematical models and analysis of the heatmasstransfer in anisotropic materials taking into account the boundaries of phase transition. 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM). 28–33 (2019).
dc.relation.referencesen[10] Sokolovskyy Y., Levkovych M., Sokolovskyy I. The study of heat transfer and stress-strain state of a material, taking into account its fractal structure. Mathematical Modeling and Computing. 7 (2), 400–409 (2020).
dc.relation.referencesen[11] Kostrobij P., Markovych B., Viznovych B., Zelinska I., Tokarchuk M. Generalized Cattaneo–Maxwell diffusion equation with fractional derivatives. Dispersion relations. Mathematical Modeling and Computing. 6 (1), 58–68 (2019).
dc.relation.referencesen[12] Kostrobij P. P., Markovych B. M., Ryzha I. A., Tokarchuk M. V. Generalized kinetic equation with spatiotemporal nonlocality. Mathematical Modeling and Computing. 6 (2), 289–296 (2019).
dc.relation.referencesen[13] Gayvas B. I., Dmytruk V. A., Semerak M. M., Rymar T. I. Solving Stefan’s linear problem for drying cylindrical timber under quasi-averaged formulation. Mathematical Modeling and Computing. 8 (2), 150–156 (2021).
dc.relation.referencesen[14] Tikhonov A. N., Samarskii A. A. Equations of mathematical physics. Oxford Pergamon Press. International series of monographs in pure and applied mathematics. 39 (1963).
dc.relation.referencesen[15] Musii R., Melnyk N., Dmytruk V. Investigation of properties of contact connector of bimetallic hollow cylinder under the influence of electromagnetic pulse. Mathematical Modeling and Computing. 5 (2), 193–200 (2018).
dc.relation.referencesen[16] Lenyuk M. P., Mikhalevska G. I. Integral transformations of the Kontorovich–Lebedev type. Chernivtsi, Prut (2002), (in Ukrainian).
dc.relation.referencesen[17] Gradshteyn I., Ryzhik I. Table of Integrals, Series and Products. Elsevier/Academic Press, Amsterdam, Seventh edition (2007).
dc.relation.referencesen[18] Prudnikov A. P., Brychkov Y. A., Marichev O. I. Integrals and Series: Direct Laplace Transforms (1st ed.). Routledge (1992).
dc.relation.referencesen[19] Simpson W., TenWolde A. Physical properties and moisture relations of wood. Wood handbook: wood as an engineering material. Madison, WI: USDA Forest Service, Forest Products Laboratory, General technical report FPL; GTR-113: Pages 3.1–3.24 (1999).
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectплоска задача теплопровідності
dc.subjectциліндричний брус
dc.subjectсушильний агент
dc.subjectпористе середовище
dc.subjectквазіоднорідне наближення
dc.subjectінтегральне перетворення
dc.subjectфункції Бесселя першого та другого роду
dc.subjectперетворення Конторовича–Лебедєва
dc.subjectтеорема Стеклова
dc.subjectфункція Гріна
dc.subjectрухома межа
dc.subjectplane problem of heat conduction
dc.subjectcylindrical beam
dc.subjectdrying agent
dc.subjectporous medium
dc.subjectquasi-homogeneous approximation
dc.subjectintegral transform
dc.subjectBessel functions of the first and second kind
dc.subjectKontorovich–Lebedev transform
dc.subjectSteklov’s theorem
dc.subjectGreen’s function
dc.subjectmoving boundary
dc.titleInvestigation of drying the porous wood of a cylindrical shape
dc.title.alternativeДослідження процесу сушіння пористої деревини циліндричної форми
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v9n2_Gayvas_B_I-Investigation_of_drying_399-415.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v9n2_Gayvas_B_I-Investigation_of_drying_399-415__COVER.png
Size:
431.8 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: