Modeling the plane radiation structures consisting of discrete elements

dc.citation.epage10
dc.citation.issue1
dc.citation.journalTitleКомп'ютерні системи проектування. Теорія і практика
dc.citation.spage1
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Підстригача, НАНУ
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems of Mechanics and Mathematics, NASU
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorАндрійчук, М.
dc.contributor.authorAndriychuk, M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-08T07:43:52Z
dc.date.available2023-03-08T07:43:52Z
dc.date.created2020-11-20
dc.date.issued2020-11-20
dc.description.abstractМоделювання діаграм випромінювання (ДВ) плоских антенних ґраток проводиться на основі строгого електродинамічного розв’язку відповідної прямої задачі, що дає змогу отримати представлення ДВ у явній операторній формі. Систему інтегральних рівнянь типу Галлена використовують для визначення розподілу струму в апертурах випромінювачів. Оптимальні коефіцієнти збудження в елементах ґратки визначають за допомогою мінімізації функціоналу, що представляє середньоквадратичне відхилення заданої та синтезованої амплітудних ДВ. Додаткові умови у функціоналі застосовуються для мінімізації випромінювання в ближній зоні ґратки та обмеження амплітуд коефіцієнтів збудження. Результати обчислень демонструють швидку збіжність запропонованого ітераційного методу та можливість синтезувати задані амплітудні ДВ різних типів.
dc.description.abstractModeling the radiation pattern (RP) of plane arrays has been carried out using the strict electrodynamical solution of the respective direct problem that allows obtaining the representation of RP in the explicit operator form. The system of integral equations of the Hallen type is used for the determination of the current distribution in the apertures of radiators. The optimal excitation coefficients in apertures are determined while minimization of functional presenting the mean-square deviation of the given and synthesized amplitude RPs. The additional terms in the functions are applied for the minimization of radiation in a near zone of array and limitation on the values of excitation coefficients. The computational results demonstrate the quick convergence of the proposed iterative procedure and the ability to synthesize the prescribed amplitude RPs of the various types.
dc.format.extent1-10
dc.format.pages10
dc.identifier.citationAndriychuk M. Modeling the plane radiation structures consisting of discrete elements / M. Andriychuk // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 1–10.
dc.identifier.citationenAndriychuk M. (2020) Modeling the plane radiation structures consisting of discrete elements. Computer Design Systems. Theory and Practice (Lviv), vol. 2, no 1, pp. 1-10.
dc.identifier.doihttps://doi.org/10.23939/cds2020.01.001
dc.identifier.issn2707-6784
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57553
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи проектування. Теорія і практика, 1 (2), 2020
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (2), 2020
dc.relation.references1. Mailloux R. J. Phased Array Antenna Handbook, Second Edition, Artech House Antennas and Propagation Library, 2005.
dc.relation.references2. Rupakula B., Aljuhani A. H. and Rebeiz G. M., “Limited scan-angle phased arrays using randomly grouped subarrays and reduced number of phase shifters”, IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 70–80, Jan. 2020, DOI: 10.1109/TAP.2019.2935100.
dc.relation.references3. Mailloux R. J. Electronically Scanned Arrays, London: Morgan & Claypool, 2007.
dc.relation.references4. Zou W., Qu S., and Yang S., “Wideband wide-scanning phased array in a triangular lattice with electromagnetic bandgap structures”, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 3, pp. 422–426, March 2019, DOI: 10.1109/LAWP.2019.2893174.
dc.relation.references5. Skobelev S. Phased Array Antennas with Optimized Element Patterns, Artech House Antennas and Propagation Library, 2011.
dc.relation.references6. Liang Z., Lv S., Li Y., Liu J., and Long Y., “Compact folded slot antenna and its entire arrays with high gain and vertical polarization”, IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 5, pp. 786–790, May 2020,DOI: 10.1109/LAWP.2020.2980249.
dc.relation.references7. Yang J. and Kishk A., “A novel low-profile compact directional ultra-wideband antenna: The self-grounded bow-tie antenna”, IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1214–1220, March 2012, DOI: 10.1109/TAP.2011.2180317.
dc.relation.references8. Bahadori K. and Rahmat-Samii Y., “An array-compensated spherical reflector antenna for a very large number of scanned beams”, IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3547–3555, Nov. 2005, DOI: 10.1109/TAP.2005.858844.
dc.relation.references9. Kim S. and Nam S., “A compact and wideband linear array antenna with low mutual coupling”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5695–5699, Aug. 2019, DOI: 10.1109/ TAP.2019.2922833.
dc.relation.references10. Lema G. G., Tesfamariam G. T., and Mohammed M. I., “A novel elliptical-cylindrical antenna array for radar applications”, IEEE Transactions on Antennas and Propagation, vol. 64, no. 5, pp. 1681–1688, May 2016, DOI: 10.1109/TAP.2016.2539370.
dc.relation.references11. Visser H. J. Array and Phased Array Antenna Basics, Chichester, UK: John Wiley & Sons, 2006.
dc.relation.references12. Naqvi A. H., Lim S., “Review of recent phased arrays for millimeter-wave wireless communication”, Sensors, vol. 18, 3194, 2018.
dc.relation.references13. Zang J. W., Alvarez-Melcon A., Gomez-Diaz J. S. Nonreciprocal Phased-Array Antennas, Phys. Rev. Applied, vol. 12, 054008, 2019.
dc.relation.references14. Collin R. E., Zucker F. J. Antenna Theory. Part 1, New York: McGraw-Hill, 1969.
dc.relation.references15. Pandey A. Practical Microstrip and Printed Antenna Design, Boston, US: Artech House, 2019.
dc.relation.references16. Four kids N. Advanced Array Systems. Applications and RF Technologies, San Francisco, CA, USA: Academic, 2000.
dc.relation.references17. Matekovits L., Laza V. A., and Vecchi G., “Analysis of large complex structures with the synthetic-functions approach”, IEEE Trans. Antennas Propag., vol. 55, no. 9, pp. 2509–2521, Sept. 2007.
dc.relation.references18. Davidson D. B. Computational Electromagnetics for RF and Microwave Engineering. Cambridge: Cambridge University Press, 2011.
dc.relation.references19. Feld Ya. N. Antennas of a Centimeter Range, Moscow: Sov. Radio, 1950. (In Russian).
dc.relation.references20. Zelkin E. G., Sokolov V. G. Methods of Antenna Synthesis. Phased Antenna Arrays and Antennas with Plane Aperture, Moscow: Sov. Radio, 1980. (In Russian).
dc.relation.references21. Chaplin A. F. Analysis and Synthesis of Antenna Arrays, Lviv: Vyshcha Shkola, 1987. (In Ukrainian).
dc.relation.references22. Li R., McNamara D. A. and G. Wei., “Evaluation of the available directivity of a radiating structure in terms of its characteristic mode content”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6686–6691, Oct. 2019, DOI: 10.1109/TAP.2019.2925184.
dc.relation.references23. Andriychuk M. I., Savenko P. O., “Synthesis of a waveguide array with due regard for the mutual coupling of radiators”, in Proc. of International Conference on Mathematical Methods in Electromagnetic Theory (MMET2000), Kharkiv, Ukraine, Sept. 12–15, vol. 2, pp. 604–606.
dc.relation.references24. Peterson A. F., Ray S. L., Mittra R. Computational Methods for Electromagnetics, New York: Wiley, IEEE Press, 1998.
dc.relation.references25. Andriychuk M. I. Antenna Synthesis through the Characteristics of Desired Amplitude, Newcastle, UK: Cambridge Scholars Publishing, 2019.
dc.relation.references26. Bulatsyk O. O., Katsenelenbaum B. Z., Topolyuk Yu. P., Voitovich N. N. Phase Optimization Problems: Applications in Wave Field Theory. Weinheim, WILEY-VCH, 2010.
dc.relation.references27. Andriychuk M. I., Voitovich N. N., “Antenna synthesis according to power radiation pattern with the condition of norm equality”, in Proc. of 2013 XVIIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Sept. 23–26, 2013, Lviv, Ukraine, pp. 137–140.
dc.relation.references28. Andriychuk M. I., Voytovich N. N., “Synthesis of a closed planar antenna with a given amplitude pattern”, Soviet Journal of Communications Technology & Electronics (English translation of Radiotekhnika I Elektronika), vol. 30. no. 5, pp. 35–40, 1985.
dc.relation.references29. Savenko P., “Computational methods in the theory of synthesis of radio and acoustic radiating systems”, Applied Mathematics, vol. 4, no 3, pp. 523–549, 2013, DOI: 10.4236/am.2013.43078.
dc.relation.references30. Andriychuk M., Kuleshnyk Ya., “Synthesis of plane waveguide array based on a strict solution of analysis problem”, in Proc. of 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), September 15–18, 2020, Tbilisi, Georgia, pp. 115–120.
dc.relation.references31. Balanis C. A. Antenna Theory: Analysis and Design, 4th ed., Hoboken, NJ, USA: John Wiley and Sons, 2016.
dc.relation.referencesen1. Mailloux R. J. Phased Array Antenna Handbook, Second Edition, Artech House Antennas and Propagation Library, 2005.
dc.relation.referencesen2. Rupakula B., Aljuhani A. H. and Rebeiz G. M., "Limited scan-angle phased arrays using randomly grouped subarrays and reduced number of phase shifters", IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 70–80, Jan. 2020, DOI: 10.1109/TAP.2019.2935100.
dc.relation.referencesen3. Mailloux R. J. Electronically Scanned Arrays, London: Morgan & Claypool, 2007.
dc.relation.referencesen4. Zou W., Qu S., and Yang S., "Wideband wide-scanning phased array in a triangular lattice with electromagnetic bandgap structures", IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 3, pp. 422–426, March 2019, DOI: 10.1109/LAWP.2019.2893174.
dc.relation.referencesen5. Skobelev S. Phased Array Antennas with Optimized Element Patterns, Artech House Antennas and Propagation Library, 2011.
dc.relation.referencesen6. Liang Z., Lv S., Li Y., Liu J., and Long Y., "Compact folded slot antenna and its entire arrays with high gain and vertical polarization", IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 5, pp. 786–790, May 2020,DOI: 10.1109/LAWP.2020.2980249.
dc.relation.referencesen7. Yang J. and Kishk A., "A novel low-profile compact directional ultra-wideband antenna: The self-grounded bow-tie antenna", IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1214–1220, March 2012, DOI: 10.1109/TAP.2011.2180317.
dc.relation.referencesen8. Bahadori K. and Rahmat-Samii Y., "An array-compensated spherical reflector antenna for a very large number of scanned beams", IEEE Transactions on Antennas and Propagation, vol. 53, no. 11, pp. 3547–3555, Nov. 2005, DOI: 10.1109/TAP.2005.858844.
dc.relation.referencesen9. Kim S. and Nam S., "A compact and wideband linear array antenna with low mutual coupling", IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5695–5699, Aug. 2019, DOI: 10.1109/ TAP.2019.2922833.
dc.relation.referencesen10. Lema G. G., Tesfamariam G. T., and Mohammed M. I., "A novel elliptical-cylindrical antenna array for radar applications", IEEE Transactions on Antennas and Propagation, vol. 64, no. 5, pp. 1681–1688, May 2016, DOI: 10.1109/TAP.2016.2539370.
dc.relation.referencesen11. Visser H. J. Array and Phased Array Antenna Basics, Chichester, UK: John Wiley & Sons, 2006.
dc.relation.referencesen12. Naqvi A. H., Lim S., "Review of recent phased arrays for millimeter-wave wireless communication", Sensors, vol. 18, 3194, 2018.
dc.relation.referencesen13. Zang J. W., Alvarez-Melcon A., Gomez-Diaz J. S. Nonreciprocal Phased-Array Antennas, Phys. Rev. Applied, vol. 12, 054008, 2019.
dc.relation.referencesen14. Collin R. E., Zucker F. J. Antenna Theory. Part 1, New York: McGraw-Hill, 1969.
dc.relation.referencesen15. Pandey A. Practical Microstrip and Printed Antenna Design, Boston, US: Artech House, 2019.
dc.relation.referencesen16. Four kids N. Advanced Array Systems. Applications and RF Technologies, San Francisco, CA, USA: Academic, 2000.
dc.relation.referencesen17. Matekovits L., Laza V. A., and Vecchi G., "Analysis of large complex structures with the synthetic-functions approach", IEEE Trans. Antennas Propag., vol. 55, no. 9, pp. 2509–2521, Sept. 2007.
dc.relation.referencesen18. Davidson D. B. Computational Electromagnetics for RF and Microwave Engineering. Cambridge: Cambridge University Press, 2011.
dc.relation.referencesen19. Feld Ya. N. Antennas of a Centimeter Range, Moscow: Sov. Radio, 1950. (In Russian).
dc.relation.referencesen20. Zelkin E. G., Sokolov V. G. Methods of Antenna Synthesis. Phased Antenna Arrays and Antennas with Plane Aperture, Moscow: Sov. Radio, 1980. (In Russian).
dc.relation.referencesen21. Chaplin A. F. Analysis and Synthesis of Antenna Arrays, Lviv: Vyshcha Shkola, 1987. (In Ukrainian).
dc.relation.referencesen22. Li R., McNamara D. A. and G. Wei., "Evaluation of the available directivity of a radiating structure in terms of its characteristic mode content", IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6686–6691, Oct. 2019, DOI: 10.1109/TAP.2019.2925184.
dc.relation.referencesen23. Andriychuk M. I., Savenko P. O., "Synthesis of a waveguide array with due regard for the mutual coupling of radiators", in Proc. of International Conference on Mathematical Methods in Electromagnetic Theory (MMET2000), Kharkiv, Ukraine, Sept. 12–15, vol. 2, pp. 604–606.
dc.relation.referencesen24. Peterson A. F., Ray S. L., Mittra R. Computational Methods for Electromagnetics, New York: Wiley, IEEE Press, 1998.
dc.relation.referencesen25. Andriychuk M. I. Antenna Synthesis through the Characteristics of Desired Amplitude, Newcastle, UK: Cambridge Scholars Publishing, 2019.
dc.relation.referencesen26. Bulatsyk O. O., Katsenelenbaum B. Z., Topolyuk Yu. P., Voitovich N. N. Phase Optimization Problems: Applications in Wave Field Theory. Weinheim, WILEY-VCH, 2010.
dc.relation.referencesen27. Andriychuk M. I., Voitovich N. N., "Antenna synthesis according to power radiation pattern with the condition of norm equality", in Proc. of 2013 XVIIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Sept. 23–26, 2013, Lviv, Ukraine, pp. 137–140.
dc.relation.referencesen28. Andriychuk M. I., Voytovich N. N., "Synthesis of a closed planar antenna with a given amplitude pattern", Soviet Journal of Communications Technology & Electronics (English translation of Radiotekhnika I Elektronika), vol. 30. no. 5, pp. 35–40, 1985.
dc.relation.referencesen29. Savenko P., "Computational methods in the theory of synthesis of radio and acoustic radiating systems", Applied Mathematics, vol. 4, no 3, pp. 523–549, 2013, DOI: 10.4236/am.2013.43078.
dc.relation.referencesen30. Andriychuk M., Kuleshnyk Ya., "Synthesis of plane waveguide array based on a strict solution of analysis problem", in Proc. of 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), September 15–18, 2020, Tbilisi, Georgia, pp. 115–120.
dc.relation.referencesen31. Balanis C. A. Antenna Theory: Analysis and Design, 4th ed., Hoboken, NJ, USA: John Wiley and Sons, 2016.
dc.rights.holder© Національний університет „Львівська політехніка“, 2020
dc.rights.holder© Andriychuk M., 2020
dc.subjectплоска ґратка
dc.subjectпряма електродинамічна задача
dc.subjectзадача синтезу
dc.subjectваріаційний підхід
dc.subjectнелінійне рівняння
dc.subjectметод послідовних наближень
dc.subjectчислове моделювання
dc.subjectplane array
dc.subjectdirect electrodynamical problem
dc.subjectsynthesis problem
dc.subjectvariational approach
dc.subjectnonlinear equation
dc.subjectmethod of successive approximation
dc.subjectcomputational modeling
dc.subject.udc519.6
dc.titleModeling the plane radiation structures consisting of discrete elements
dc.title.alternativeМоделювання плоских випромінюючих стркутур, які складаються з дискретних елементів
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v2n1_Andriychuk_M-Modeling_the_plane_radiation_1-10.pdf
Size:
434.46 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: