Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen
| dc.citation.epage | 29 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Хімія та хімічна технологія | |
| dc.citation.spage | 23 | |
| dc.citation.volume | 18 | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Danylo Halytsky Lviv National Medical University | |
| dc.contributor.author | Demchuk, Yuriy | |
| dc.contributor.author | Donchenko, Myroslava | |
| dc.contributor.author | Astakhova, Olena | |
| dc.contributor.author | Gunka, Volodymyr | |
| dc.contributor.author | Drapak, Iryna | |
| dc.contributor.author | Sulyma, Marta | |
| dc.contributor.author | Palianytsia, Liubov | |
| dc.contributor.author | Bratychak, Michael | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-24T06:19:56Z | |
| dc.date.created | 2024-03-01 | |
| dc.date.issued | 2024-03-01 | |
| dc.description.abstract | Методом поліконденсації бісфенолу А з формальдегідом синтезовано бісфеноло-формальдегідну смолу. Проведено модифікування дорожніх бітумів цією смолою. За різного вмісту синтезованої смоли встановлено можливість її використання як модифікатора дорожнього нафтового бітуму. Встановлено, що введення в склад бітуму синтезованої бісфеноло-формальдегідної смоли значно підвищує його теплостійкість. Проведено ІЧ- спектроскопічний аналіз синтезованої смоли та модифікованих нею бітумів. Описано зміну складу та властивостей бітуму, модифікованого бісфеноло-формальдегідною смолою. | |
| dc.description.abstract | A bisphenol-formaldehyde resin was synthesized using the polycondensation method of bisphenol A with formaldehyde. Road bitumen has been modified with this resin. The possibility of its use as a road petroleum bitumen modifier has been established for different contents of the synthesized resin. It has been established that the introduction of synthesized bisphenol-formaldehyde resin into the composition of bitumen significantly increases its heat resistance. The synthesized resin and modified bitumens were characterized using IR spectroscopy. The change in the composition and properties of the bitumen modified with bisphenol-formaldehyde resin has been described. | |
| dc.format.extent | 23-29 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen / Yuriy Demchuk, Myroslava Donchenko, Olena Astakhova, Volodymyr Gunka, Iryna Drapak, Marta Sulyma, Liubov Palianytsia, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 23–29. | |
| dc.identifier.citationen | Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen / Yuriy Demchuk, Myroslava Donchenko, Olena Astakhova, Volodymyr Gunka, Iryna Drapak, Marta Sulyma, Liubov Palianytsia, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 23–29. | |
| dc.identifier.doi | doi.org/10.23939/chcht18.01.023 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111780 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія та хімічна технологія, 1 (18), 2024 | |
| dc.relation.ispartof | Chemistry & Chemical Technology, 1 (18), 2024 | |
| dc.relation.references | [1] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934-1952. https://doi.org/10.3390/coatings12121934 | |
| dc.relation.references | [2] Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reutskyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitumen and Asphalt Concrete. Pet. Coal 2019, 61, 836-842. | |
| dc.relation.references | [3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
| dc.relation.references | [4] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
| dc.relation.references | [5] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Compositions for Cold Applied Roofing Products. Chem. Chem. Technol. 2017, 11, 226-229. https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.references | [6] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242 | |
| dc.relation.references | [7] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
| dc.relation.references | [8] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
| dc.relation.references | [9] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456 | |
| dc.relation.references | [10] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
| dc.relation.references | [11] Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
| dc.relation.references | [12] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561 | |
| dc.relation.references | [13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
| dc.relation.references | [14] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197-1200. https://doi.org/10.1016/j.matpr.2021.07.206 | |
| dc.relation.references | [15] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
| dc.relation.references | [16] Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324-1328. https://doi.org/10.1016/j.fuel.2008.12.024 | |
| dc.relation.references | [17] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689 | |
| dc.relation.references | [18] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865 | |
| dc.relation.references | [19] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
| dc.relation.references | [20] Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889 | |
| dc.relation.references | [21] Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386-1392. https://ssrn.com/abstract=3457096 | |
| dc.relation.references | [22] Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0 | |
| dc.relation.references | [23] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
| dc.relation.references | [24] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
| dc.relation.references | [25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206. | |
| dc.relation.references | [26] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
| dc.relation.references | [27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
| dc.relation.references | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
| dc.relation.references | [29] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015. | |
| dc.relation.references | [30] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015. | |
| dc.relation.references | [31] EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018. | |
| dc.relation.references | [32] EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018. | |
| dc.relation.references | [33] EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018. | |
| dc.relation.references | [34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018. | |
| dc.relation.references | [35] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015. | |
| dc.relation.references | [36] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009. | |
| dc.relation.references | [37] Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979. https://doi.org/10.1007/978-3-662-11309-7 | |
| dc.relation.references | [38] Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009. | |
| dc.relation.references | [39] Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: New York, 1971. https://doi.org/10.1007/978-1-4684-1872-9 | |
| dc.relation.referencesen | [1] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934-1952. https://doi.org/10.3390/coatings12121934 | |
| dc.relation.referencesen | [2] Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reutskyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitumen and Asphalt Concrete. Pet. Coal 2019, 61, 836-842. | |
| dc.relation.referencesen | [3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774 | |
| dc.relation.referencesen | [4] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438 | |
| dc.relation.referencesen | [5] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Compositions for Cold Applied Roofing Products. Chem. Chem. Technol. 2017, 11, 226-229. https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.referencesen | [6] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242 | |
| dc.relation.referencesen | [7] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693 | |
| dc.relation.referencesen | [8] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429. | |
| dc.relation.referencesen | [9] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456 | |
| dc.relation.referencesen | [10] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274 | |
| dc.relation.referencesen | [11] Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
| dc.relation.referencesen | [12] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561 | |
| dc.relation.referencesen | [13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142 | |
| dc.relation.referencesen | [14] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197-1200. https://doi.org/10.1016/j.matpr.2021.07.206 | |
| dc.relation.referencesen | [15] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069 | |
| dc.relation.referencesen | [16] Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324-1328. https://doi.org/10.1016/j.fuel.2008.12.024 | |
| dc.relation.referencesen | [17] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689 | |
| dc.relation.referencesen | [18] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865 | |
| dc.relation.referencesen | [19] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154 | |
| dc.relation.referencesen | [20] Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889 | |
| dc.relation.referencesen | [21] Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386-1392. https://ssrn.com/abstract=3457096 | |
| dc.relation.referencesen | [22] Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0 | |
| dc.relation.referencesen | [23] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608 | |
| dc.relation.referencesen | [24] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142 | |
| dc.relation.referencesen | [25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206. | |
| dc.relation.referencesen | [26] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95-102. https://doi.org/10.1007/978-3-030-57340-9_12 | |
| dc.relation.referencesen | [27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
| dc.relation.referencesen | [28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518 | |
| dc.relation.referencesen | [29] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015. | |
| dc.relation.referencesen | [30] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015. | |
| dc.relation.referencesen | [31] EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018. | |
| dc.relation.referencesen | [32] EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018. | |
| dc.relation.referencesen | [33] EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018. | |
| dc.relation.referencesen | [34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018. | |
| dc.relation.referencesen | [35] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015. | |
| dc.relation.referencesen | [36] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009. | |
| dc.relation.referencesen | [37] Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979. https://doi.org/10.1007/978-3-662-11309-7 | |
| dc.relation.referencesen | [38] Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009. | |
| dc.relation.referencesen | [39] Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: New York, 1971. https://doi.org/10.1007/978-1-4684-1872-9 | |
| dc.relation.uri | https://doi.org/10.3390/coatings12121934 | |
| dc.relation.uri | https://doi.org/10.3390/ma15051774 | |
| dc.relation.uri | https://doi.org/10.23939/chcht15.03.438 | |
| dc.relation.uri | https://doi.org/10.23939/chcht11.02.226 | |
| dc.relation.uri | https://doi.org/10.3390/polym13193242 | |
| dc.relation.uri | https://doi.org/10.3390/ma15165693 | |
| dc.relation.uri | https://doi.org/10.23939/chcht12.04.456 | |
| dc.relation.uri | https://doi.org/10.23939/chcht15.02.274 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.04.036 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2022.126561 | |
| dc.relation.uri | https://doi.org/10.23939/chcht15.01.142 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2021.07.206 | |
| dc.relation.uri | https://doi.org/10.23939/chcht09.01.069 | |
| dc.relation.uri | https://doi.org/10.1016/j.fuel.2008.12.024 | |
| dc.relation.uri | https://doi.org/10.3390/su142315689 | |
| dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.119865 | |
| dc.relation.uri | https://doi.org/10.1080/14680629.2020.1828154 | |
| dc.relation.uri | https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889 | |
| dc.relation.uri | https://ssrn.com/abstract=3457096 | |
| dc.relation.uri | https://doi.org/10.1007/s41062-017-0052-0 | |
| dc.relation.uri | https://doi.org/10.23939/chcht15.04.608 | |
| dc.relation.uri | https://doi.org/10.23939/chcht16.01.142 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-030-57340-9_12 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijadhadh.2022.103191 | |
| dc.relation.uri | https://doi.org/10.1080/14680629.2020.1808518 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-662-11309-7 | |
| dc.relation.uri | https://doi.org/10.1007/978-1-4684-1872-9 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.rights.holder | © Demchuk Yu., Donchenko M., Astakhova O., Gunka V., Drapak I., Sulyma M., Palianytsia L., Bratychak M., 2024 | |
| dc.subject | бісфенол А | |
| dc.subject | модифікування бітуму | |
| dc.subject | ІЧ спектроскопія | |
| dc.subject | bisphenol A | |
| dc.subject | bitumen modification | |
| dc.subject | IR spectroscopy | |
| dc.title | Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen | |
| dc.title.alternative | Вплив бісфеноло-формальдегідної смоли на фізико-механічні властивості дорожніх бітумів | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1