Effect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen

dc.citation.epage29
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage23
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationDanylo Halytsky Lviv National Medical University
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorDonchenko, Myroslava
dc.contributor.authorAstakhova, Olena
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorDrapak, Iryna
dc.contributor.authorSulyma, Marta
dc.contributor.authorPalianytsia, Liubov
dc.contributor.authorBratychak, Michael
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:56Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractМетодом поліконденсації бісфенолу А з формальдегідом синтезовано бісфеноло-формальдегідну смолу. Проведено модифікування дорожніх бітумів цією смолою. За різного вмісту синтезованої смоли встановлено можливість її використання як модифікатора дорожнього нафтового бітуму. Встановлено, що введення в склад бітуму синтезованої бісфеноло-формальдегідної смоли значно підвищує його теплостійкість. Проведено ІЧ- спектроскопічний аналіз синтезованої смоли та модифікованих нею бітумів. Описано зміну складу та властивостей бітуму, модифікованого бісфеноло-формальдегідною смолою.
dc.description.abstractA bisphenol-formaldehyde resin was synthesized using the polycondensation method of bisphenol A with formaldehyde. Road bitumen has been modified with this resin. The possibility of its use as a road petroleum bitumen modifier has been established for different contents of the synthesized resin. It has been established that the introduction of synthesized bisphenol-formaldehyde resin into the composition of bitumen significantly increases its heat resistance. The synthesized resin and modified bitumens were characterized using IR spectroscopy. The change in the composition and properties of the bitumen modified with bisphenol-formaldehyde resin has been described.
dc.format.extent23-29
dc.format.pages7
dc.identifier.citationEffect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen / Yuriy Demchuk, Myroslava Donchenko, Olena Astakhova, Volodymyr Gunka, Iryna Drapak, Marta Sulyma, Liubov Palianytsia, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 23–29.
dc.identifier.citationenEffect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen / Yuriy Demchuk, Myroslava Donchenko, Olena Astakhova, Volodymyr Gunka, Iryna Drapak, Marta Sulyma, Liubov Palianytsia, Michael Bratychak // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 23–29.
dc.identifier.doidoi.org/10.23939/chcht18.01.023
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111780
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934-1952. https://doi.org/10.3390/coatings12121934
dc.relation.references[2] Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reutskyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitumen and Asphalt Concrete. Pet. Coal 2019, 61, 836-842.
dc.relation.references[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.references[4] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.references[5] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Compositions for Cold Applied Roofing Products. Chem. Chem. Technol. 2017, 11, 226-229. https://doi.org/10.23939/chcht11.02.226
dc.relation.references[6] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
dc.relation.references[7] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.references[8] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
dc.relation.references[9] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.references[10] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.references[11] Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.references[12] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
dc.relation.references[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
dc.relation.references[14] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197-1200. https://doi.org/10.1016/j.matpr.2021.07.206
dc.relation.references[15] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.references[16] Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324-1328. https://doi.org/10.1016/j.fuel.2008.12.024
dc.relation.references[17] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
dc.relation.references[18] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
dc.relation.references[19] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
dc.relation.references[20] Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.references[21] Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386-1392. https://ssrn.com/abstract=3457096
dc.relation.references[22] Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
dc.relation.references[23] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.references[24] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.references[25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206.
dc.relation.references[26] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.references[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.references[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.references[29] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
dc.relation.references[30] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
dc.relation.references[31] EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018.
dc.relation.references[32] EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018.
dc.relation.references[33] EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018.
dc.relation.references[34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
dc.relation.references[35] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
dc.relation.references[36] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
dc.relation.references[37] Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979. https://doi.org/10.1007/978-3-662-11309-7
dc.relation.references[38] Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009.
dc.relation.references[39] Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: New York, 1971. https://doi.org/10.1007/978-1-4684-1872-9
dc.relation.referencesen[1] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934-1952. https://doi.org/10.3390/coatings12121934
dc.relation.referencesen[2] Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reutskyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitumen and Asphalt Concrete. Pet. Coal 2019, 61, 836-842.
dc.relation.referencesen[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
dc.relation.referencesen[4] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
dc.relation.referencesen[5] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Compositions for Cold Applied Roofing Products. Chem. Chem. Technol. 2017, 11, 226-229. https://doi.org/10.23939/chcht11.02.226
dc.relation.referencesen[6] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
dc.relation.referencesen[7] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
dc.relation.referencesen[8] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
dc.relation.referencesen[9] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461. https://doi.org/10.23939/chcht12.04.456
dc.relation.referencesen[10] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesen[11] Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.referencesen[12] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
dc.relation.referencesen[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
dc.relation.referencesen[14] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197-1200. https://doi.org/10.1016/j.matpr.2021.07.206
dc.relation.referencesen[15] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
dc.relation.referencesen[16] Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324-1328. https://doi.org/10.1016/j.fuel.2008.12.024
dc.relation.referencesen[17] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
dc.relation.referencesen[18] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
dc.relation.referencesen[19] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
dc.relation.referencesen[20] Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.referencesen[21] Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386-1392. https://ssrn.com/abstract=3457096
dc.relation.referencesen[22] Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
dc.relation.referencesen[23] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
dc.relation.referencesen[24] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
dc.relation.referencesen[25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199-1206.
dc.relation.referencesen[26] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.referencesen[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.referencesen[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesen[29] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
dc.relation.referencesen[30] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
dc.relation.referencesen[31] EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018.
dc.relation.referencesen[32] EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018.
dc.relation.referencesen[33] EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018.
dc.relation.referencesen[34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
dc.relation.referencesen[35] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
dc.relation.referencesen[36] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
dc.relation.referencesen[37] Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979. https://doi.org/10.1007/978-3-662-11309-7
dc.relation.referencesen[38] Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009.
dc.relation.referencesen[39] Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: New York, 1971. https://doi.org/10.1007/978-1-4684-1872-9
dc.relation.urihttps://doi.org/10.3390/coatings12121934
dc.relation.urihttps://doi.org/10.3390/ma15051774
dc.relation.urihttps://doi.org/10.23939/chcht15.03.438
dc.relation.urihttps://doi.org/10.23939/chcht11.02.226
dc.relation.urihttps://doi.org/10.3390/polym13193242
dc.relation.urihttps://doi.org/10.3390/ma15165693
dc.relation.urihttps://doi.org/10.23939/chcht12.04.456
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.04.036
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2022.126561
dc.relation.urihttps://doi.org/10.23939/chcht15.01.142
dc.relation.urihttps://doi.org/10.1016/j.matpr.2021.07.206
dc.relation.urihttps://doi.org/10.23939/chcht09.01.069
dc.relation.urihttps://doi.org/10.1016/j.fuel.2008.12.024
dc.relation.urihttps://doi.org/10.3390/su142315689
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.119865
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1828154
dc.relation.urihttps://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
dc.relation.urihttps://ssrn.com/abstract=3457096
dc.relation.urihttps://doi.org/10.1007/s41062-017-0052-0
dc.relation.urihttps://doi.org/10.23939/chcht15.04.608
dc.relation.urihttps://doi.org/10.23939/chcht16.01.142
dc.relation.urihttps://doi.org/10.1007/978-3-030-57340-9_12
dc.relation.urihttps://doi.org/10.1016/j.ijadhadh.2022.103191
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://doi.org/10.1007/978-3-662-11309-7
dc.relation.urihttps://doi.org/10.1007/978-1-4684-1872-9
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Demchuk Yu., Donchenko M., Astakhova O., Gunka V., Drapak I., Sulyma M., Palianytsia L., Bratychak M., 2024
dc.subjectбісфенол А
dc.subjectмодифікування бітуму
dc.subjectІЧ спектроскопія
dc.subjectbisphenol A
dc.subjectbitumen modification
dc.subjectIR spectroscopy
dc.titleEffect of Bisphenol-Formaldehyde Resin on Physico-Mechanical Properties of Road Bitumen
dc.title.alternativeВплив бісфеноло-формальдегідної смоли на фізико-механічні властивості дорожніх бітумів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Demchuk_Y-Effect_of_Bisphenol_Formaldehyde_23-29.pdf
Size:
4.86 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Demchuk_Y-Effect_of_Bisphenol_Formaldehyde_23-29__COVER.png
Size:
570.6 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.86 KB
Format:
Plain Text
Description: