Analysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP

dc.citation.epage24
dc.citation.issue1(30)
dc.citation.journalTitleГеодинаміка
dc.citation.spage17
dc.contributor.affiliationЧернівецький національний університет імені Ю. Федьковича
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationYuriy Fedkovych Chernivtsi National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЗигар, Андрій
dc.contributor.authorСавчин, Ігор
dc.contributor.authorЮщенко, Юрій
dc.contributor.authorПасічник, Микола
dc.contributor.authorZyhar, Andrii
dc.contributor.authorSavchyn, Ihor
dc.contributor.authorYushchenko, Yuriy
dc.contributor.authorPasichnyk, Mykola
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-07-03T07:16:16Z
dc.date.available2023-07-03T07:16:16Z
dc.date.created2021-02-23
dc.date.issued2021-02-23
dc.description.abstractМетою досліджень є математичний аналіз та прогнозування деформацій дисперсних ґрунтів на основі вивчення даних інклінометричних спостережень в районі природно-технічної системи Дністровської ГАЕС. Методика. Методика досліджень базується на математичному аналізі та моделюванні процесів, що відбуваються у гірському масиві, на якому розташована Дністровська ГАЕС, із використанням методу кінцевих елементів. Результати. В роботі представлено аналіз результатів геотехнічного моніторингу деформацій дисперсних ґрунтів, реалізованого на базі інклінометричних вимірювань на території Дністровської ГАЕС. Встановлено кількісні параметри розподілу горизонтальних зміщень в інклінометричних свердловинах. Вони дали можливість виявити негативну динаміку у геологічних шарах N1-2ap і N1p+v, яка очевидно спричинена техногенним навантаженням. Виконано моделювання деформацій дисперсних ґрунтів під впливом природних і техногенних навантажень. На основі результатів моделювання підтверджено зміну знаку деформацій під впливом додаткового навантаження, яким може служити наповнення Дністровського верхнього водосховища. Очевидно, використання виключно цього методу не дає можливості в повній мірі виявляти та відстежувати сучасні геологічні, сейсмічні та геодинамічні процеси. Оптимальним є поєднання та детальний аналіз різних методів моніторингу (геофізичних, геодезичних, параметричних, віброметричних, гідрогеологічних, температурних, візуальноінструментальних та інших), а також моделювання деформацій об’єкту під впливом природних і техногенних чинників. Такі моделювання могли б бути використані для проєктування інших об’єктів такого типу, тому це є перспективним напрямком для подальших досліджень. Наукова новизна. Вперше проведено математичний аналіз та прогнозування деформацій дисперсних грунтів в районі природно-технічної системи Дністровської ГАЕС на основі вивчення даних інклінометричних спостережень. Практична значущість. Запропонована методика може бути використана для проєктування інших об’єктів такого типу, оскільки моделювання деформацій об’єкту під впливом природних і техногенних чинників дає можливість оцінити можливі ризики та попередити їх.
dc.description.abstractPurpose. The aim of the research is mathematical analysis and forecasting of dispersive soils behaviour based on the study of inclinometric observations data in the area of the natural-technical system of the Dnister PSPP. Methodology. The research methodology is based on mathematical analysis and modelling of processes occurring in the mountain massif on which the Dnister PSPP is located, using the finite element method. Results. The paper presents an analysis of the results of geotechnical monitoring of the behaviour of dispersive soils, implemented on the basis of inclinometric measurements on the territory of the Dnister PSPP. Quantitative parameters of horizontal displacement distribution in inclinometric wells are established. They made it possible to detect negative dynamics in the geological horizons N1-2ap and N1p+v, which is apparently caused by technogenic load caused by the Dnister upper reservoir. The behaviour of dispersive soils under the influence of natural and technogenic loads has been modelled. Based on the simulation results, the change of the sign of deformations under the influence of additional load, which can be the filling of the Dnister upper reservoir, is confirmed. Obviously, the use of this method alone does not allow full detecting and tracking modern geological, seismic and geodynamic processes. A combination and detailed analysis of different monitoring methods (geophysical, geodetic, parametric, vibrometric, hydrogeological, temperature, visual-instrumental and others), as well as modelling the behaviour of the object under the influence of natural and technogenic factors is optimal. Such simulations could be used in the design of other objects of this type, so this is a promising area for further research. Originality. For the first time, a mathematical analysis and forecasting of the behaviour of dispersed soils in the area of the natural and technical system of the Dnister PSPP was conducted on the basis of studying the data of inclinometric observations. Practical significance. The proposed technique can be used in the design of other objects of this type, as modelling the behaviour of the object under the influence of natural and technogenic factors makes it possible to assess possible risks and prevent them.
dc.format.extent17-24
dc.format.pages8
dc.identifier.citationAnalysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP / Andrii Zyhar, Ihor Savchyn, Yuriy Yushchenko, Mykola Pasichnyk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 17–24.
dc.identifier.citationenAnalysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP / Andrii Zyhar, Ihor Savchyn, Yuriy Yushchenko, Mykola Pasichnyk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2021. — No 1(30). — P. 17–24.
dc.identifier.doidoi.org/10.23939/jgd2021.01.017
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59343
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 1(30), 2021
dc.relation.ispartofGeodynamics, 1(30), 2021
dc.relation.referencesBakhrebah, S. A., & Schnobrich, W. C. (1973). Finite
dc.relation.referenceselement analysis of intersecting cylinders. University of Illinois Engineering Experiment Station.
dc.relation.referencesCollege of Engineering. University of Illinois at Urbana-Champaign.
dc.relation.referencesBenjamin, J. R., & Cornell, C. A. (1970). Solutions
dc.relation.referencesManual to Accompany Probability, Statistics, and
dc.relation.referencesDecision for Civil Engineers. McGraw-Hill.
dc.relation.referencesBubniak, A. M., Bubniak, I. M., & Zyhar, A. I. (2020,
dc.relation.referencesMay). Lineaments analysis of the Dnister area
dc.relation.references(between Bakota and Novodnistrovsk). In Geoinformatics: Theoretical and Applied Aspects 2020
dc.relation.references(Vol. 2020, No. 1, p. 1–4). European Association
dc.relation.referencesof Geoscientists & Engineers.
dc.relation.referencesDavoodi, M., Pourdeilami, A., Jahankhah, H., &
dc.relation.referencesJafari, M. K. (2018). Application of perfectly matched
dc.relation.referenceslayer to soil-foundation interaction analysis. Journal
dc.relation.referencesof Rock Mechanics and Geotechnical Engineering, 10(4), 753–768.
dc.relation.referencesGeokon (2019). Instruction Manual, Model 6300,
dc.relation.referencesVibrating Wire In-Place Inclinometer.
dc.relation.referenceshttps://www.geokon.com/content/manuals/6300_In-Place_Inclinometer.pdf.
dc.relation.referencesGeological map of Ukraine, Scale 1: 200 000. (2008).
dc.relation.referencesVolyn-Podilsky series, M-35-XXVIII (Bar), M35-XXXIV (Mohyliv-Podilsky). (in Ukrainian).
dc.relation.referencesHerget, G. (1973, January). Variation of rock stresses
dc.relation.referenceswith depth at a Canadian iron mine. In International
dc.relation.referencesJournal of Rock Mechanics and Mining Sciences
dc.relation.references& Geomechanics Abstracts (Vol. 10, No. 1, p. 37–51). Pergamon. https://doi.org/10.1016/0148-9062(73)90058-2
dc.relation.referencesHowlett, J. (1966). Handbook of Mathematical Functions.
dc.relation.referencesEdited by Milton Abramowitz and Irene A. Stegun.
dc.relation.referencesConstable (Dover Publications Inc.) Paperback
dc.relation.referencesedition 1965. The Mathematical Gazette, 50(373), 358–359.
dc.relation.referencesHu, X., Zhang, M., Sun, M., Huang, K., & Song, Y.
dc.relation.references(2015). Deformation characteristics and failure
dc.relation.referencesmode of the Zhujiadian landslide in the Three
dc.relation.referencesGorges Reservoir, China. Bulletin of Engineering
dc.relation.referencesGeology and the Environment, 74(1), 1–12.
dc.relation.referencesKorolev, V. A., Zlochevskaya, R. I. & Osipov, V. I.
dc.relation.references(1985). Deformability of clay soils during
dc.relation.referencescompression compaction [Deformiruemost glinistyih gruntov pri kompressionnom uplotnenii] //
dc.relation.referencesPhysicochemical mechanics of natural dispersed
dc.relation.referencessystems [Fiziko-himicheskaya mehanika prirodnyih dispersnyih system] / Ed. by. Schukinai E. D., MGU, 213–222. (in Russian)
dc.relation.referencesMasoom, H., Courtier-Murias, D., Farooq, H., Soong,
dc.relation.referencesR., Kelleher, B. P., Zhang, C., ... & Simpson, A. J.
dc.relation.references(2016). Soil organic matter in its native state:
dc.relation.referencesunravelling the most complex biomaterial on
dc.relation.referencesearth. Environmental science & technology, 50(4), 670–1680.
dc.relation.referencesMirassi, S., & Rahnema, H. (2019). Effect of frequency content of seismic source load on Rayleigh
dc.relation.referencesand P waves in soil media with cavity. Journal of
dc.relation.referencesStructural and Construction Engineering. doi: 10.22065/jsce.2019.176403.1808.
dc.relation.referencesPaswey, S. E., & Clough, R. W. (1971). Improved
dc.relation.referencesnumerical integration of thick slab finite elements.
dc.relation.referencesInt. J. Numer. Meth. Eng, 3, 545–586.
dc.relation.referencesPawsey, S. F. (1970). The analysis of moderately thick
dc.relation.referencesand thin shells (Doctoral dissertation, PhD thesis,
dc.relation.referencesDepartment of Civil Engineering, University of
dc.relation.referencesCalifornia, Berkeley, CA).
dc.relation.referencesPotapov, V. D. (2014). About calculation of bars lying
dc.relation.referenceson a nonlocal elastic foundation. Structural Mechanics
dc.relation.referencesof Engineering Constructions and Buildings, 4, 63–68.
dc.relation.referencesSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesof recent local geodynamic and seismic processes
dc.relation.referencesof technogenic-loaded territories based on the
dc.relation.referencesexample of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391–400.
dc.relation.referenceshttps://doi.org/10.1016/j.geog.2020.06.001
dc.relation.referencesSavchyn, I., Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesof the territory of Dnister Pumped Storage Power
dc.relation.referencesPlant. Acta Geodyn. Geomater., 15, 1(189), 41–46. doi: 10.13168/AGG.2018.0002.
dc.relation.referencesScordelis, A. C., & Lo, K. S. (1964, May). Computer
dc.relation.referencesanalysis of cylindrical shells. In Journal Proceedings
dc.relation.references(Vol. 61, No. 5, p. 539–562).
dc.relation.referencesSidorov, I. S., Perij, S. S., & Sarnavskyj, V. H. (2015).
dc.relation.referencesDetermination of the earth surface movements in
dc.relation.referencesareas of Dnister PSPP using satellite and ground
dc.relation.referencesgeodetic methods. Geodynamics. 19 (2), 15–25.
dc.relation.referencesdoi: 10.23939/jgd2015.02.015 (in Ukrainian).
dc.relation.referencesSokolnikoff, I. S., & Specht, R. D. (1956). Mathematical theory of elasticity (Vol. 83). New York:
dc.relation.referencesMcGraw-Hill.
dc.relation.referencesTerzaghi, K. (1962). Measurement of stresses in rock.
dc.relation.referencesInstitution of civil engineers. Geotechnique, 12, 105–124.
dc.relation.referencesTerzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil
dc.relation.referencesmechanics in engineering practice. John Wiley & Sons.
dc.relation.referencesTonon, F., Bernardini, A., & Mammino, A. (2000).
dc.relation.referencesReliability analysis of rock mass response by means
dc.relation.referencesof random set theory. Reliability Engineering &
dc.relation.referencesSystem Safety, 70(3), 263–282.
dc.relation.referencesToo, J. J. M. (1971). Two-dimension, plate, shell and
dc.relation.referencesfinite prism isoparametric elements and their
dc.relation.referencesapplications (Doctoral dissertation, University
dc.relation.referencesCollege Swansea).
dc.relation.referencesTsyitovich, N. A. (1963). Soil Mechanics [Mehanika
dc.relation.referencesgruntov], 4-th Ed. Moscow, State publishing
dc.relation.referenceshouse literature on building architecture and building materials [Gos. izd-vol iteraturyi po stroitelstvu
dc.relation.referencesarhitekture i stroitelnyim materialam]. 638. (in
dc.relation.referencesRussian).
dc.relation.referencesTsyitovich, N. A. (1973). Soil Mechanics (Short Course)
dc.relation.references[Mehanika gruntov (kratkiy kurs)]. 2-nd Ed.
dc.relation.referencesMoscow, High school. 280. (in Russian).
dc.relation.referencesVainberg, A. I. (1993). Forces in the casing of the
dc.relation.referencesaggregate shafts of the Dnestrovsk water-storage
dc.relation.referenceselectric power plant. Journal of Mining Science, 29(1), 27–31.
dc.relation.referencesVainberg, A. I. (2012). Numerical studies of the stressstrain state, strength and stability of the slope of
dc.relation.referencesthe main structures of the Dnister pumped
dc.relation.referencesstorage power plant [Chislennyye issledovaniya
dc.relation.referencesnapryazhenno-deformirovannogo sostoyaniya,
dc.relation.referencesprochnosti i ustoychivosti sklona osnovnykh
dc.relation.referencessooruzheniy Dnestrovskoy GAES]. Hydropower
dc.relation.referencesof Ukraine, (1), 48–53. (in Russian).
dc.relation.referencesYin, Y., Huang, B., Wang, W., Wei, Y., Ma, X., Ma, F.,
dc.relation.references& Zhao, C. (2016). Reservoir-induced landslides
dc.relation.referencesand risk control in Three Gorges Project on
dc.relation.referencesYangtze River, China. Journal of Rock Mechanics
dc.relation.referencesand Geotechnical Engineering, 8(5), 577–595.
dc.relation.referencesYin, Y., Wang, H., Gao, Y., & Li, X. (2010). Realtime monitoring and early warning of landslides at
dc.relation.referencesrelocated Wushan Town, the Three Gorges Reservoir,
dc.relation.referencesChina. Landslides, 7(3), 339–349.
dc.relation.referencesZienkiewicz, O. C., Taylor, R. L., & Too, J. (1971).
dc.relation.referencesReduced integration technique in general analysis of
dc.relation.referencesplates and shells. International Journal for Numerical
dc.relation.referencesMethods in Engineering, 3(2), 275–290.
dc.relation.referencesenBakhrebah, S. A., & Schnobrich, W. C. (1973). Finite
dc.relation.referencesenelement analysis of intersecting cylinders. University of Illinois Engineering Experiment Station.
dc.relation.referencesenCollege of Engineering. University of Illinois at Urbana-Champaign.
dc.relation.referencesenBenjamin, J. R., & Cornell, C. A. (1970). Solutions
dc.relation.referencesenManual to Accompany Probability, Statistics, and
dc.relation.referencesenDecision for Civil Engineers. McGraw-Hill.
dc.relation.referencesenBubniak, A. M., Bubniak, I. M., & Zyhar, A. I. (2020,
dc.relation.referencesenMay). Lineaments analysis of the Dnister area
dc.relation.referencesen(between Bakota and Novodnistrovsk). In Geoinformatics: Theoretical and Applied Aspects 2020
dc.relation.referencesen(Vol. 2020, No. 1, p. 1–4). European Association
dc.relation.referencesenof Geoscientists & Engineers.
dc.relation.referencesenDavoodi, M., Pourdeilami, A., Jahankhah, H., &
dc.relation.referencesenJafari, M. K. (2018). Application of perfectly matched
dc.relation.referencesenlayer to soil-foundation interaction analysis. Journal
dc.relation.referencesenof Rock Mechanics and Geotechnical Engineering, 10(4), 753–768.
dc.relation.referencesenGeokon (2019). Instruction Manual, Model 6300,
dc.relation.referencesenVibrating Wire In-Place Inclinometer.
dc.relation.referencesenhttps://www.geokon.com/content/manuals/6300_In-Place_Inclinometer.pdf.
dc.relation.referencesenGeological map of Ukraine, Scale 1: 200 000. (2008).
dc.relation.referencesenVolyn-Podilsky series, M-35-XXVIII (Bar), M35-XXXIV (Mohyliv-Podilsky). (in Ukrainian).
dc.relation.referencesenHerget, G. (1973, January). Variation of rock stresses
dc.relation.referencesenwith depth at a Canadian iron mine. In International
dc.relation.referencesenJournal of Rock Mechanics and Mining Sciences
dc.relation.referencesen& Geomechanics Abstracts (Vol. 10, No. 1, p. 37–51). Pergamon. https://doi.org/10.1016/0148-9062(73)90058-2
dc.relation.referencesenHowlett, J. (1966). Handbook of Mathematical Functions.
dc.relation.referencesenEdited by Milton Abramowitz and Irene A. Stegun.
dc.relation.referencesenConstable (Dover Publications Inc.) Paperback
dc.relation.referencesenedition 1965. The Mathematical Gazette, 50(373), 358–359.
dc.relation.referencesenHu, X., Zhang, M., Sun, M., Huang, K., & Song, Y.
dc.relation.referencesen(2015). Deformation characteristics and failure
dc.relation.referencesenmode of the Zhujiadian landslide in the Three
dc.relation.referencesenGorges Reservoir, China. Bulletin of Engineering
dc.relation.referencesenGeology and the Environment, 74(1), 1–12.
dc.relation.referencesenKorolev, V. A., Zlochevskaya, R. I. & Osipov, V. I.
dc.relation.referencesen(1985). Deformability of clay soils during
dc.relation.referencesencompression compaction [Deformiruemost glinistyih gruntov pri kompressionnom uplotnenii] //
dc.relation.referencesenPhysicochemical mechanics of natural dispersed
dc.relation.referencesensystems [Fiziko-himicheskaya mehanika prirodnyih dispersnyih system], Ed. by. Schukinai E. D., MGU, 213–222. (in Russian)
dc.relation.referencesenMasoom, H., Courtier-Murias, D., Farooq, H., Soong,
dc.relation.referencesenR., Kelleher, B. P., Zhang, C., ... & Simpson, A. J.
dc.relation.referencesen(2016). Soil organic matter in its native state:
dc.relation.referencesenunravelling the most complex biomaterial on
dc.relation.referencesenearth. Environmental science & technology, 50(4), 670–1680.
dc.relation.referencesenMirassi, S., & Rahnema, H. (2019). Effect of frequency content of seismic source load on Rayleigh
dc.relation.referencesenand P waves in soil media with cavity. Journal of
dc.relation.referencesenStructural and Construction Engineering. doi: 10.22065/jsce.2019.176403.1808.
dc.relation.referencesenPaswey, S. E., & Clough, R. W. (1971). Improved
dc.relation.referencesennumerical integration of thick slab finite elements.
dc.relation.referencesenInt. J. Numer. Meth. Eng, 3, 545–586.
dc.relation.referencesenPawsey, S. F. (1970). The analysis of moderately thick
dc.relation.referencesenand thin shells (Doctoral dissertation, PhD thesis,
dc.relation.referencesenDepartment of Civil Engineering, University of
dc.relation.referencesenCalifornia, Berkeley, CA).
dc.relation.referencesenPotapov, V. D. (2014). About calculation of bars lying
dc.relation.referencesenon a nonlocal elastic foundation. Structural Mechanics
dc.relation.referencesenof Engineering Constructions and Buildings, 4, 63–68.
dc.relation.referencesenSavchyn, I., & Pronyshyn, R. (2020). Differentiation
dc.relation.referencesenof recent local geodynamic and seismic processes
dc.relation.referencesenof technogenic-loaded territories based on the
dc.relation.referencesenexample of Dnister Hydro Power Complex (Ukraine). Geodesy and Geodynamics, 11(5), 391–400.
dc.relation.referencesenhttps://doi.org/10.1016/j.geog.2020.06.001
dc.relation.referencesenSavchyn, I., Vaskovets, S. (2018). Local geodynamics
dc.relation.referencesenof the territory of Dnister Pumped Storage Power
dc.relation.referencesenPlant. Acta Geodyn. Geomater., 15, 1(189), 41–46. doi: 10.13168/AGG.2018.0002.
dc.relation.referencesenScordelis, A. C., & Lo, K. S. (1964, May). Computer
dc.relation.referencesenanalysis of cylindrical shells. In Journal Proceedings
dc.relation.referencesen(Vol. 61, No. 5, p. 539–562).
dc.relation.referencesenSidorov, I. S., Perij, S. S., & Sarnavskyj, V. H. (2015).
dc.relation.referencesenDetermination of the earth surface movements in
dc.relation.referencesenareas of Dnister PSPP using satellite and ground
dc.relation.referencesengeodetic methods. Geodynamics. 19 (2), 15–25.
dc.relation.referencesendoi: 10.23939/jgd2015.02.015 (in Ukrainian).
dc.relation.referencesenSokolnikoff, I. S., & Specht, R. D. (1956). Mathematical theory of elasticity (Vol. 83). New York:
dc.relation.referencesenMcGraw-Hill.
dc.relation.referencesenTerzaghi, K. (1962). Measurement of stresses in rock.
dc.relation.referencesenInstitution of civil engineers. Geotechnique, 12, 105–124.
dc.relation.referencesenTerzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil
dc.relation.referencesenmechanics in engineering practice. John Wiley & Sons.
dc.relation.referencesenTonon, F., Bernardini, A., & Mammino, A. (2000).
dc.relation.referencesenReliability analysis of rock mass response by means
dc.relation.referencesenof random set theory. Reliability Engineering &
dc.relation.referencesenSystem Safety, 70(3), 263–282.
dc.relation.referencesenToo, J. J. M. (1971). Two-dimension, plate, shell and
dc.relation.referencesenfinite prism isoparametric elements and their
dc.relation.referencesenapplications (Doctoral dissertation, University
dc.relation.referencesenCollege Swansea).
dc.relation.referencesenTsyitovich, N. A. (1963). Soil Mechanics [Mehanika
dc.relation.referencesengruntov], 4-th Ed. Moscow, State publishing
dc.relation.referencesenhouse literature on building architecture and building materials [Gos. izd-vol iteraturyi po stroitelstvu
dc.relation.referencesenarhitekture i stroitelnyim materialam]. 638. (in
dc.relation.referencesenRussian).
dc.relation.referencesenTsyitovich, N. A. (1973). Soil Mechanics (Short Course)
dc.relation.referencesen[Mehanika gruntov (kratkiy kurs)]. 2-nd Ed.
dc.relation.referencesenMoscow, High school. 280. (in Russian).
dc.relation.referencesenVainberg, A. I. (1993). Forces in the casing of the
dc.relation.referencesenaggregate shafts of the Dnestrovsk water-storage
dc.relation.referencesenelectric power plant. Journal of Mining Science, 29(1), 27–31.
dc.relation.referencesenVainberg, A. I. (2012). Numerical studies of the stressstrain state, strength and stability of the slope of
dc.relation.referencesenthe main structures of the Dnister pumped
dc.relation.referencesenstorage power plant [Chislennyye issledovaniya
dc.relation.referencesennapryazhenno-deformirovannogo sostoyaniya,
dc.relation.referencesenprochnosti i ustoychivosti sklona osnovnykh
dc.relation.referencesensooruzheniy Dnestrovskoy GAES]. Hydropower
dc.relation.referencesenof Ukraine, (1), 48–53. (in Russian).
dc.relation.referencesenYin, Y., Huang, B., Wang, W., Wei, Y., Ma, X., Ma, F.,
dc.relation.referencesen& Zhao, C. (2016). Reservoir-induced landslides
dc.relation.referencesenand risk control in Three Gorges Project on
dc.relation.referencesenYangtze River, China. Journal of Rock Mechanics
dc.relation.referencesenand Geotechnical Engineering, 8(5), 577–595.
dc.relation.referencesenYin, Y., Wang, H., Gao, Y., & Li, X. (2010). Realtime monitoring and early warning of landslides at
dc.relation.referencesenrelocated Wushan Town, the Three Gorges Reservoir,
dc.relation.referencesenChina. Landslides, 7(3), 339–349.
dc.relation.referencesenZienkiewicz, O. C., Taylor, R. L., & Too, J. (1971).
dc.relation.referencesenReduced integration technique in general analysis of
dc.relation.referencesenplates and shells. International Journal for Numerical
dc.relation.referencesenMethods in Engineering, 3(2), 275–290.
dc.relation.urihttps://www.geokon.com/content/manuals/6300_In-Place_Inclinometer.pdf
dc.relation.urihttps://doi.org/10.1016/0148-9062(73)90058-2
dc.relation.urihttps://doi.org/10.1016/j.geog.2020.06.001
dc.rights.holder© Інститут геології і геохімії горючих копалин Національної академії наук України, 2021
dc.rights.holder© Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2021
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Zyhar Andrii, Savchyn Ihor, Yushchenko Yuriy, Pasichnyk Mykola
dc.subjectгеотехнічний моніторинг
dc.subjectдисперсні ґрунти
dc.subjectпрогнозування деформацій
dc.subjectінклінометричні свердловини
dc.subjectДністровська ГАЕС
dc.subjectgeotechnical monitoring
dc.subjectdispersive soils
dc.subjectstress-strain behaviour
dc.subjectinclinometric wells
dc.subjectDnister PSPP
dc.subject.udc550.36.
dc.subject.udc551.1/.4
dc.titleAnalysis of inclinometric observations and prediction of soils deformations in the area of the Dnister PSPP
dc.title.alternativeАналіз інклінометричних спостережень та прогнозування деформацій ґрунтів в районі Дністровської ГАЕС
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021n1_30__Zyhar_A-Analysis_of_inclinometric_observations_17-24.pdf
Size:
600.38 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021n1_30__Zyhar_A-Analysis_of_inclinometric_observations_17-24__COVER.png
Size:
1.54 MB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Plain Text
Description: