Estimation of solar hot water system operation for a residential building
dc.citation.epage | 6 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Савченко, Олена | |
dc.contributor.author | Савченко, Зенон | |
dc.contributor.author | Savchenko, Olena | |
dc.contributor.author | Savchenko, Zenon | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-09-14T07:39:52Z | |
dc.date.available | 2023-09-14T07:39:52Z | |
dc.date.created | 2021-06-01 | |
dc.date.issued | 2021-06-01 | |
dc.description.abstract | Системи сонячного гарячого водопостачання можуть забезпечити значну частину теплової енергії, необхідної в житловому секторі. Використання систем сонячного гарячого водопостачання дозволяє зменшити споживання традиційних видів енергії, і, відповідно, зменшити викиди парникових газів. Мета цієї статті полягає в оцінці роботи системи сонячного теплопостачання для забезпечення потреб системи гарячого водопостачання житлового будинку тепловою енергією. Встановлено ефективність плоского сонячного колектора, який працює у одноконтурній термосифонній системі сонячного теплопостачання житлового будинку в м. Львів. Визначено сонячну частку системи гарячого водопостачання житлового будинку залежно від об’єму гарячої води, яка споживається, зокрема 50, 60, 70, 80, 90, 100 л/добу. Встановлено, що чим менша потреба у гарячій воді, тим більша сонячна частка системи сонячного гарячого водопостачання. Так, середньорічна сонячна частка система сонячного гарячого водопостачання зі щоденним споживанням 50 л/добу становить 0,77; при щоденному споживанні 100 л/добу сонячна частка дорівнює 0,39. Середнє значення сонячної частки для систем сонячного гарячого водопостачання досліджуваного будинку становить 0,55. | |
dc.description.abstract | Solar hot water supply systems can provide a significant part of the thermal energy needed in the residential sector. The use of solar hot water supply systems can reduce the consumption of traditional energy sources and, consequently, reduce greenhouse gas emissions. The aim of this article is to assess the operation of the solar heating system operation to provide the needs of the hot water supply system of a residential building with thermal energy. The efficiency of a flat solar collector operating in a single-circuit thermosyphon system of solar heating of a residential building in Lviv has been established. The solar fraction of the hot water supply system of a residential building is determined depending on the volume of hot water consumed, in particular 50, 60, 70, 80, 90, 100 l/day. It is established that the lower the need for hot water, the greater the solar fraction of the solar hot water supply system. Thus, the average annual solar fraction of the solar hot water supply system with a daily consumption of 50 l/day is 0.77, and with a daily consumption of 100 l/day the solar fraction is 0.39. The average value of the solar fraction for the solar hot water supply systems of the studied house is 0.55. | |
dc.format.extent | 1-6 | |
dc.format.pages | 6 | |
dc.identifier.citation | Savchenko O. Estimation of solar hot water system operation for a residential building / Olena Savchenko, Zenon Savchenko // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 1. — P. 1–6. | |
dc.identifier.citationen | Savchenko O. Estimation of solar hot water system operation for a residential building / Olena Savchenko, Zenon Savchenko // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 7. — No 1. — P. 1–6. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59980 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Energy Engineering and Control Systems, 1 (7), 2021 | |
dc.relation.references | [1] Wojdyga. K., Chorzelski M. (2017) Chances for Polish district heating systems. Energy Procedia, 116, 106-118. | |
dc.relation.references | [2] Millar M.-A., Burnside N. M., Yu Z. (2019) District heating challenges for the UK. Energies, 12(2), 310. https://doi.org/10.3390/en12020310 | |
dc.relation.references | [3] Mendoza R.C., Hernandez J. M. R., Gomes E. V., Alonso J. F. S. J., Martinez F. J. R. (2019) Analysis of the methodology to obtain several key indicators performance (KIP), by energy Retrofitting of the actual building to the district heating fuelled by biomass focusing on nZEB goal: case of study. Energies, 12(1), 93. https://doi.org/10.3390/en12010093 | |
dc.relation.references | [4] Savchenko O., Zhelykh V., Yurkevych Y., Kozak K., Bahmet S. (2018) Alternative energy source for heating system of woodworking enterprise. Energy engineering and control systems, 4 (1), 2730. https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.references | [5] Nshimyumuremyi E., Junqi W. (2019) Thermal efficiency and cost analysis of solar water heater made in Rwanda. Energy exploration & exploitation, 37(3) 1147–1161. https://doi.org/10.1177/0144598718815240 | |
dc.relation.references | [6] Tadvi Sachin Vinubhai, Jain Vishal R, Dr. Keyur Thakkar, A Review: Solar Water Heating Systems file:///C:/Users/Osa/Downloads/SachinKeyurSolarReviewpaper.pdf | |
dc.relation.references | [7] Serban A., Barbuta-Misu N., Ciucescu N., Paraschiv S., Paraschiv S. (2016) Economic and environmental analysis of investing in solar water heating systems. Sustainability, 8(12), 1286; https://doi.org/10.3390/su8121286 | |
dc.relation.references | [8] Struckmann F. (2008) Analysis of a Flat-plate Solar Collector. MVK160 Heat and Mass Transport, 4 p. http://www.lth.se/fileadmin/ht/Kurser/MVK160/Project_08/Fabio.pdf | |
dc.relation.references | [9] Solar Electricity Handbook. (2019) http://www.solarelectricityhandbook.com/solar-irradiance.html | |
dc.relation.references | [10] Vaillant, auroTHERM classic VFK 135/2 D https://www.vaillant.ua/dlia-klientiv/produktsia/aurotherm-classic-vfk-135-2-d-vd13056.html#specification (in Ukrainian) | |
dc.relation.references | [11] Weather in Lviv: July. https://tur-pogoda.com.ua/ukraine/lvov/july. (in Ukrainian) | |
dc.relation.referencesen | [1] Wojdyga. K., Chorzelski M. (2017) Chances for Polish district heating systems. Energy Procedia, 116, 106-118. | |
dc.relation.referencesen | [2] Millar M.-A., Burnside N. M., Yu Z. (2019) District heating challenges for the UK. Energies, 12(2), 310. https://doi.org/10.3390/en12020310 | |
dc.relation.referencesen | [3] Mendoza R.C., Hernandez J. M. R., Gomes E. V., Alonso J. F. S. J., Martinez F. J. R. (2019) Analysis of the methodology to obtain several key indicators performance (KIP), by energy Retrofitting of the actual building to the district heating fuelled by biomass focusing on nZEB goal: case of study. Energies, 12(1), 93. https://doi.org/10.3390/en12010093 | |
dc.relation.referencesen | [4] Savchenko O., Zhelykh V., Yurkevych Y., Kozak K., Bahmet S. (2018) Alternative energy source for heating system of woodworking enterprise. Energy engineering and control systems, 4 (1), 2730. https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.referencesen | [5] Nshimyumuremyi E., Junqi W. (2019) Thermal efficiency and cost analysis of solar water heater made in Rwanda. Energy exploration & exploitation, 37(3) 1147–1161. https://doi.org/10.1177/0144598718815240 | |
dc.relation.referencesen | [6] Tadvi Sachin Vinubhai, Jain Vishal R, Dr. Keyur Thakkar, A Review: Solar Water Heating Systems file:///C:/Users/Osa/Downloads/SachinKeyurSolarReviewpaper.pdf | |
dc.relation.referencesen | [7] Serban A., Barbuta-Misu N., Ciucescu N., Paraschiv S., Paraschiv S. (2016) Economic and environmental analysis of investing in solar water heating systems. Sustainability, 8(12), 1286; https://doi.org/10.3390/su8121286 | |
dc.relation.referencesen | [8] Struckmann F. (2008) Analysis of a Flat-plate Solar Collector. MVK160 Heat and Mass Transport, 4 p. http://www.lth.se/fileadmin/ht/Kurser/MVK160/Project_08/Fabio.pdf | |
dc.relation.referencesen | [9] Solar Electricity Handbook. (2019) http://www.solarelectricityhandbook.com/solar-irradiance.html | |
dc.relation.referencesen | [10] Vaillant, auroTHERM classic VFK 135/2 D https://www.vaillant.ua/dlia-klientiv/produktsia/aurotherm-classic-vfk-135-2-d-vd13056.html#specification (in Ukrainian) | |
dc.relation.referencesen | [11] Weather in Lviv: July. https://tur-pogoda.com.ua/ukraine/lvov/july. (in Ukrainian) | |
dc.relation.uri | https://doi.org/10.3390/en12020310 | |
dc.relation.uri | https://doi.org/10.3390/en12010093 | |
dc.relation.uri | https://doi.org/10.23939/jeecs2018.01.027 | |
dc.relation.uri | https://doi.org/10.1177/0144598718815240 | |
dc.relation.uri | file:///C:/Users/Osa/Downloads/SachinKeyurSolarReviewpaper.pdf | |
dc.relation.uri | https://doi.org/10.3390/su8121286 | |
dc.relation.uri | http://www.lth.se/fileadmin/ht/Kurser/MVK160/Project_08/Fabio.pdf | |
dc.relation.uri | http://www.solarelectricityhandbook.com/solar-irradiance.html | |
dc.relation.uri | https://www.vaillant.ua/dlia-klientiv/produktsia/aurotherm-classic-vfk-135-2-d-vd13056.html#specification | |
dc.relation.uri | https://tur-pogoda.com.ua/ukraine/lvov/july | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | система сонячного теплопостачання | |
dc.subject | система гарячого водопостачання | |
dc.subject | сонячний колектор | |
dc.subject | сонячне випромінювання | |
dc.subject | сонячна частка | |
dc.subject | solar water heating system | |
dc.subject | hot water supply system | |
dc.subject | solar collector | |
dc.subject | solar radiation | |
dc.subject | solar fraction | |
dc.title | Estimation of solar hot water system operation for a residential building | |
dc.title.alternative | Оцінка роботи сонячної системи гарячого водопостачання житлового будинку | |
dc.type | Article |
Files
License bundle
1 - 1 of 1