The methodology of approximate construction of the three-dimensional mass distribution function and its gradient for the ellipsoidal planet subsidies
dc.citation.epage | 32 | |
dc.citation.issue | 2 (29) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 21 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Фис, М. М. | |
dc.contributor.author | Бридун, А. М. | |
dc.contributor.author | Юрків, М. І. | |
dc.contributor.author | Согор, А. Р. | |
dc.contributor.author | Голубінка, Ю. І. | |
dc.contributor.author | Fys, M. M. | |
dc.contributor.author | Brydun, A. M. | |
dc.contributor.author | Yurkiv, M. I. | |
dc.contributor.author | Sohor, A. R. | |
dc.contributor.author | Holubinka, Y. I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-06-20T08:16:13Z | |
dc.date.available | 2023-06-20T08:16:13Z | |
dc.date.created | 2020-02-25 | |
dc.date.issued | 2020-02-25 | |
dc.description.abstract | Мета. Створити алгоритм побудови тривимірної функції розподілу мас планети та її похідних з урахуванням стоксових сталих довільних порядків. Спираючись на цей алгоритм, виконати дослідження внутрішньої будови Землі. Методика. Похідні неоднорідного розподілу мас подають лінійними комбінаціями біортогональних многочленів, коефіцієнти яких отримують із системи рівнянь. Ці рівняння одержують інтегральними перетвореннями стоксових сталих, а процес обчислень здійснюється послідовним наближенням і за початкове наближення беруть одновимірну модель густини, узгоджену зі стоксовими сталими до другого порядку включно. Далі визначають коефіцієнти розкладу потенціалу до третього, четвертого і т. д. порядків, аж до наперед заданого порядку. Зведення степеневих моментів густини до поверхневих інтегралів дає можливість аналізувати та контролювати ітераційний процес. Результати. Результати обчислень отримано з використанням програмного продукту за описаним алгоритмом. Досягнуто достатньо високого степеня апроксимації (шостого порядку) тривимірних розподілів та створено картосхеми за врахованими значеннями відхилень тривимірних розподілів від середнього (“ізоденси”), які дають доволі детальну картину внутрішньої будови Землі. Наведені карти “неоднорідностей” на характерних глибинах (2891 км ядро–мантія, 5150 км внутрішнє–зовнішнє ядро) дають підстави зробити попередні висновки про глобальні переміщення мас. Значущою для інтерпретації є інформація про похідні. Насамперед можна наголосити, що ґрадієнт “неоднорідностей” спрямований до центра мас. Подані проєкції цього ґрадієнта на площину, перпендикулярно до осі обертання (горизонтальної площини), відображають тенденцію просторових переміщень. Наукова новизна. Векторграми ґрадієнта в сукупності із картосхемами дають ширше уявлення про динаміку ймовірного переміщення мас всередині планети та можливі механізми, що їх спричиняють. Певною мірою ці дослідження підтверджують явище гравітаційної конвекції мас. Практична значущість. Запропонований алгоритм можна використовувати для побудови регіональних моделей планети, а числові результати – для інтерпретації глобальних та локальних геодинамічних процесів всередині та на поверхні Землі. | |
dc.description.abstract | Purpose. To create an algorithm for constructing a three-dimensional masses distribution function of the planet and its derivatives taking into account the Stokes constants of arbitrary orders. Being based on this method, the task is to perform the research on the internal structure of the Earth. Methodology. The derivatives of the inhomogeneous mass distribution are presented by linear combinations of biorthogonal polynomials which coefficients are obtained from the system of equations. These equations follow from integral transformations of the Stokes constants, the calculation process is carried out by a sequential approximation and for the initial approximation we take a one-dimensional density model that is consistent with Stokes constants up to the second inclusive order. Next, the coefficients of expansion of the potential of higher orders are determined up to a predetermined order. In this case, the information on the power moments of the density of surface integrals makes it possible to analyze and control the iterative process. Results. The results of calculations using the software according to the described algorithm are obtained. A fairly high degree of approximation (sixth order) of three-dimensional mass distributions function is achieved. Carto diagrams were created being based on the values of deviations of the three-dimensional average distributions (“isodens”), which give a fairly detailed picture of the Earth’s internal structure. The presented maps of “inhomogeneity’s” at characteristic depths (2891 km core – mantle, 5150 km internal – external core) allow us to draw preliminary conclusions about global mass movements. At the same time, the information on derivatives is significant for interpretation. First of all, it should be noted that the gradient of “inhomogeneity’s” is directed toward the center of mass. The presented projections of this gradient on a plane perpendicular to the rotation axis (horizontal plane) show the tendency of spatial displacements. Scientific novelty. Vector diagrams of the gradient, in combination with carto diagrams, give a broad picture of the dynamics and possible mechanisms of mass movement within the planet. To a certain extent, these studies confirm the phenomenon of gravitational convection of masses. Practical significance. The proposed algorithm can be used in order to build regional models of the planet, and numerical results can be used to interpret global and local geodynamic processes inside and on the Earth’s surface. | |
dc.format.extent | 21-32 | |
dc.format.pages | 12 | |
dc.identifier.citation | The methodology of approximate construction of the three-dimensional mass distribution function and its gradient for the ellipsoidal planet subsidies / M. M. Fys, A. M. Brydun, M. I. Yurkiv, A. R. Sohor, Y. I. Holubinka // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 21–32. | |
dc.identifier.citationen | The methodology of approximate construction of the three-dimensional mass distribution function and its gradient for the ellipsoidal planet subsidies / M. M. Fys, A. M. Brydun, M. I. Yurkiv, A. R. Sohor, Y. I. Holubinka // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2020. — No 2 (29). — P. 21–32. | |
dc.identifier.doi | doi.org/10.23939/jgd2020.02.021 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/59299 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 2 (29), 2020 | |
dc.relation.ispartof | Geodynamics, 2 (29), 2020 | |
dc.relation.references | Bullen, K. E. (1975). The earth’s density. London, | |
dc.relation.references | Chapman and Hall. | |
dc.relation.references | Chernyaga, P. G., & Fys, M. M. (2012). A new | |
dc.relation.references | approach to the use of Stokes constants for the | |
dc.relation.references | construction of functions and its derivatives of | |
dc.relation.references | mass distribution of planets. Collection of scientific | |
dc.relation.references | works of Western geodesic society UTGK “Modern | |
dc.relation.references | achievements in geodetic science and production”. II | |
dc.relation.references | (24), 40–43. (in Ukrainian). | |
dc.relation.references | Dzewonski, A., & Anderson, D. (1981). Preliminary | |
dc.relation.references | reference Earth model. Physics of the earth and | |
dc.relation.references | planetary interiors, 25 (4), 297–356. doi: 10.1016/0031-9201(81)90046-7. | |
dc.relation.references | Fys, M. M., Zazulyak, P. M., & Chernyaga, P. G. | |
dc.relation.references | (2013). Values of Densities and their | |
dc.relation.references | Variations at the Barycenters of Ellipsoidal | |
dc.relation.references | Planets. Kinematics and physics of celestial | |
dc.relation.references | bodies 29 (2), 62–68. (in Ukrainian). | |
dc.relation.references | https://www.mao.kiev.ua/biblio/jscans/kfnt/2013-29/kfnt-2013-29-2-06.pdf | |
dc.relation.references | Fys, M., Zazuliak, P., & Zajats’, O. (2004). On the | |
dc.relation.references | question of determining spherical functions in a | |
dc.relation.references | general planetary coordinate system Collection of | |
dc.relation.references | scientific works of Western geodesic society | |
dc.relation.references | UTGK “Modern achievements in geodetic | |
dc.relation.references | science and production”, I (7), 401–408. (in Ukrainian). | |
dc.relation.references | Fys, M. M., Brydun, A. M., Yurkiv, M. I., & Sohor A. R. | |
dc.relation.references | (2018). On definition of a function by its derivatives, | |
dc.relation.references | represented by combinations of legendre polynomials | |
dc.relation.references | of three variables. Young Scientist, 63 (11). (in | |
dc.relation.references | Ukrainian). http://molodyvcheny.in.ua/files/journal/2018/11/91.pdf | |
dc.relation.references | Fys, M., Yurkiv, M., Brydun, A., & Lozynskyi, V. (2016). | |
dc.relation.references | One option of constructing three-dimensional | |
dc.relation.references | distribution of the mass and its derivatives for a | |
dc.relation.references | spherical planet earth. Geodynamics, 2 (21), 36–44. | |
dc.relation.references | https://doi.org/10.23939/jgd2016.02.036 | |
dc.relation.references | Fys, M., Brydun, A., & Yurkiv, M. (2018). Method for | |
dc.relation.references | approximate construction of three-dimensional mass | |
dc.relation.references | distribution function and gradient of an elipsoidal | |
dc.relation.references | planet based on external gravitational field | |
dc.relation.references | parameters. Geodynamics, 2 (25), 27–36. | |
dc.relation.references | https://doi.org/10.23939/jgd2018.02.027 | |
dc.relation.references | Martinee, Z., & Pec, K. (1987). Three-Dimensional | |
dc.relation.references | Density Distribution Generating the Observed Gravity Field of Planets: Part I. The Earth. In Figure and | |
dc.relation.references | Dynamics of the Earth, Moon and Planets (p. 129). | |
dc.relation.references | http://articles.adsabs.harvard.edu/full/conf/fdem./1987//0000129.000.html | |
dc.relation.references | Martinee, Z., & Pec, K. (1987). Three-Dimensional | |
dc.relation.references | Density Distribution Generating the Observed | |
dc.relation.references | Gravity Field of Planets: Part II. The Moon. In | |
dc.relation.references | Figure and Dynamics of the Earth, Moon and | |
dc.relation.references | Planets (p. 153). | |
dc.relation.references | Meshcheriakov, H. O. (1975). Application of the | |
dc.relation.references | Stokes constants of the Earth for correction of its | |
dc.relation.references | mechanical models. Geodesy, Cartography and | |
dc.relation.references | Aerial Photography. 21, 23–30. (in Russian). | |
dc.relation.references | http://science.lpnu.ua/sites/default/files/journalpaper/2018/apr/10725/meshcheryakov2.pdf | |
dc.relation.references | Meshcheryakov, G. A., & Fys, M. M. (1981). | |
dc.relation.references | Determination of the Earth’s interior density by | |
dc.relation.references | series using biorthogonal polynomial systems. | |
dc.relation.references | Theory and methods of interpretation of gravitational | |
dc.relation.references | and magnetic anomalies. Kyiv: Naukova dumka, 329–334. (in Russian) | |
dc.relation.references | Meshcheryakov, G. A., & Fys, M. M. (1986). Threedimensional and reference density models of the | |
dc.relation.references | Earth. Geophysical Journal, 8 (4), 68–75.(in Russian). | |
dc.relation.references | Meshcheryakov, G. A., & Fys, M. M. (1990). | |
dc.relation.references | Threedimensional density model of the Earth І. | |
dc.relation.references | Geophysical Journal. 12(4), 50–57.(in Russian). | |
dc.relation.references | Meshcheryakov, G. A., & Fys, M. M. (1990). | |
dc.relation.references | Threedimensional density model of the Earth ІI. | |
dc.relation.references | Meshcheriakov, G. (1991). Problems of potential | |
dc.relation.references | theory and generalized Earth. M: Science, Сhief | |
dc.relation.references | editor of physical and mathematical literature. (in | |
dc.relation.references | Russian). | |
dc.relation.references | Moritz, H. (1973). Ellipsoidal mass distributions. | |
dc.relation.references | Report No. 206, Department of Geodetic Science, | |
dc.relation.references | The Ohio State University, Columbus, Ohio. | |
dc.relation.references | Tserklevych, A. L., Zayats, O. S., & Fys, M. M. | |
dc.relation.references | (2012). Earth group planets gravitational models | |
dc.relation.references | of 3-d density distributions. Geodynamics, 1 (12), 42–53. (in Ukrainian). https://doi.org/10.23939/jgd2012.01.042 | |
dc.relation.referencesen | Bullen, K. E. (1975). The earth’s density. London, | |
dc.relation.referencesen | Chapman and Hall. | |
dc.relation.referencesen | Chernyaga, P. G., & Fys, M. M. (2012). A new | |
dc.relation.referencesen | approach to the use of Stokes constants for the | |
dc.relation.referencesen | construction of functions and its derivatives of | |
dc.relation.referencesen | mass distribution of planets. Collection of scientific | |
dc.relation.referencesen | works of Western geodesic society UTGK "Modern | |
dc.relation.referencesen | achievements in geodetic science and production". II | |
dc.relation.referencesen | (24), 40–43. (in Ukrainian). | |
dc.relation.referencesen | Dzewonski, A., & Anderson, D. (1981). Preliminary | |
dc.relation.referencesen | reference Earth model. Physics of the earth and | |
dc.relation.referencesen | planetary interiors, 25 (4), 297–356. doi: 10.1016/0031-9201(81)90046-7. | |
dc.relation.referencesen | Fys, M. M., Zazulyak, P. M., & Chernyaga, P. G. | |
dc.relation.referencesen | (2013). Values of Densities and their | |
dc.relation.referencesen | Variations at the Barycenters of Ellipsoidal | |
dc.relation.referencesen | Planets. Kinematics and physics of celestial | |
dc.relation.referencesen | bodies 29 (2), 62–68. (in Ukrainian). | |
dc.relation.referencesen | https://www.mao.kiev.ua/biblio/jscans/kfnt/2013-29/kfnt-2013-29-2-06.pdf | |
dc.relation.referencesen | Fys, M., Zazuliak, P., & Zajats’, O. (2004). On the | |
dc.relation.referencesen | question of determining spherical functions in a | |
dc.relation.referencesen | general planetary coordinate system Collection of | |
dc.relation.referencesen | scientific works of Western geodesic society | |
dc.relation.referencesen | UTGK "Modern achievements in geodetic | |
dc.relation.referencesen | science and production", I (7), 401–408. (in Ukrainian). | |
dc.relation.referencesen | Fys, M. M., Brydun, A. M., Yurkiv, M. I., & Sohor A. R. | |
dc.relation.referencesen | (2018). On definition of a function by its derivatives, | |
dc.relation.referencesen | represented by combinations of legendre polynomials | |
dc.relation.referencesen | of three variables. Young Scientist, 63 (11). (in | |
dc.relation.referencesen | Ukrainian). http://molodyvcheny.in.ua/files/journal/2018/11/91.pdf | |
dc.relation.referencesen | Fys, M., Yurkiv, M., Brydun, A., & Lozynskyi, V. (2016). | |
dc.relation.referencesen | One option of constructing three-dimensional | |
dc.relation.referencesen | distribution of the mass and its derivatives for a | |
dc.relation.referencesen | spherical planet earth. Geodynamics, 2 (21), 36–44. | |
dc.relation.referencesen | https://doi.org/10.23939/jgd2016.02.036 | |
dc.relation.referencesen | Fys, M., Brydun, A., & Yurkiv, M. (2018). Method for | |
dc.relation.referencesen | approximate construction of three-dimensional mass | |
dc.relation.referencesen | distribution function and gradient of an elipsoidal | |
dc.relation.referencesen | planet based on external gravitational field | |
dc.relation.referencesen | parameters. Geodynamics, 2 (25), 27–36. | |
dc.relation.referencesen | https://doi.org/10.23939/jgd2018.02.027 | |
dc.relation.referencesen | Martinee, Z., & Pec, K. (1987). Three-Dimensional | |
dc.relation.referencesen | Density Distribution Generating the Observed Gravity Field of Planets: Part I. The Earth. In Figure and | |
dc.relation.referencesen | Dynamics of the Earth, Moon and Planets (p. 129). | |
dc.relation.referencesen | http://articles.adsabs.harvard.edu/full/conf/fdem./1987//0000129.000.html | |
dc.relation.referencesen | Martinee, Z., & Pec, K. (1987). Three-Dimensional | |
dc.relation.referencesen | Density Distribution Generating the Observed | |
dc.relation.referencesen | Gravity Field of Planets: Part II. The Moon. In | |
dc.relation.referencesen | Figure and Dynamics of the Earth, Moon and | |
dc.relation.referencesen | Planets (p. 153). | |
dc.relation.referencesen | Meshcheriakov, H. O. (1975). Application of the | |
dc.relation.referencesen | Stokes constants of the Earth for correction of its | |
dc.relation.referencesen | mechanical models. Geodesy, Cartography and | |
dc.relation.referencesen | Aerial Photography. 21, 23–30. (in Russian). | |
dc.relation.referencesen | http://science.lpnu.ua/sites/default/files/journalpaper/2018/apr/10725/meshcheryakov2.pdf | |
dc.relation.referencesen | Meshcheryakov, G. A., & Fys, M. M. (1981). | |
dc.relation.referencesen | Determination of the Earth’s interior density by | |
dc.relation.referencesen | series using biorthogonal polynomial systems. | |
dc.relation.referencesen | Theory and methods of interpretation of gravitational | |
dc.relation.referencesen | and magnetic anomalies. Kyiv: Naukova dumka, 329–334. (in Russian) | |
dc.relation.referencesen | Meshcheryakov, G. A., & Fys, M. M. (1986). Threedimensional and reference density models of the | |
dc.relation.referencesen | Earth. Geophysical Journal, 8 (4), 68–75.(in Russian). | |
dc.relation.referencesen | Meshcheryakov, G. A., & Fys, M. M. (1990). | |
dc.relation.referencesen | Threedimensional density model of the Earth I. | |
dc.relation.referencesen | Geophysical Journal. 12(4), 50–57.(in Russian). | |
dc.relation.referencesen | Meshcheryakov, G. A., & Fys, M. M. (1990). | |
dc.relation.referencesen | Threedimensional density model of the Earth II. | |
dc.relation.referencesen | Meshcheriakov, G. (1991). Problems of potential | |
dc.relation.referencesen | theory and generalized Earth. M: Science, Shief | |
dc.relation.referencesen | editor of physical and mathematical literature. (in | |
dc.relation.referencesen | Russian). | |
dc.relation.referencesen | Moritz, H. (1973). Ellipsoidal mass distributions. | |
dc.relation.referencesen | Report No. 206, Department of Geodetic Science, | |
dc.relation.referencesen | The Ohio State University, Columbus, Ohio. | |
dc.relation.referencesen | Tserklevych, A. L., Zayats, O. S., & Fys, M. M. | |
dc.relation.referencesen | (2012). Earth group planets gravitational models | |
dc.relation.referencesen | of 3-d density distributions. Geodynamics, 1 (12), 42–53. (in Ukrainian). https://doi.org/10.23939/jgd2012.01.042 | |
dc.relation.uri | https://www.mao.kiev.ua/biblio/jscans/kfnt/2013-29/kfnt-2013-29-2-06.pdf | |
dc.relation.uri | http://molodyvcheny.in.ua/files/journal/2018/11/91.pdf | |
dc.relation.uri | https://doi.org/10.23939/jgd2016.02.036 | |
dc.relation.uri | https://doi.org/10.23939/jgd2018.02.027 | |
dc.relation.uri | http://articles.adsabs.harvard.edu/full/conf/fdem./1987//0000129.000.html | |
dc.relation.uri | http://science.lpnu.ua/sites/default/files/journalpaper/2018/apr/10725/meshcheryakov2.pdf | |
dc.relation.uri | https://doi.org/10.23939/jgd2012.01.042 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2020 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2020 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2020 | |
dc.rights.holder | © Fys M. M., Brydun A. M., Yurkiv M. I., Sohor A. R., Holubinka Y. I. | |
dc.subject | потенціал | |
dc.subject | ґрадієнт | |
dc.subject | гармонічна функція | |
dc.subject | Земля | |
dc.subject | модель розподілу мас | |
dc.subject | стоксові сталі | |
dc.subject | potential | |
dc.subject | gradient | |
dc.subject | harmonic function | |
dc.subject | Earth | |
dc.subject | mass distribution model | |
dc.subject | Stokes constants | |
dc.subject.udc | 528.33 | |
dc.subject.udc | 551.24 | |
dc.title | The methodology of approximate construction of the three-dimensional mass distribution function and its gradient for the ellipsoidal planet subsidies | |
dc.title.alternative | Методика наближеної побудови тривимірної функції розподілу мас та її градієнта для надр еліпсоїдальної планети | |
dc.type | Article |
Files
License bundle
1 - 1 of 1