Green Synthesis of Functionalized Poly(3-Glycidoxypropyl-Trimethoxysilane) Using an Eco-Catalyst (Treated Montmorillonite)
dc.citation.epage | 69 | |
dc.citation.issue | 1 | |
dc.citation.spage | 60 | |
dc.contributor.affiliation | Université Oran 1 | |
dc.contributor.author | Embarek, Nadia | |
dc.contributor.author | Sahli, Nabahat | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T10:29:44Z | |
dc.date.available | 2024-02-09T10:29:44Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Катіонною полімеризацією з відкриттям кільця 3-гліцидоксипропілтриметоксисілану і використанням ангідридів (оцтового ангідриду (АА) та метакрилового ангідриду (МА)), за відсутності розчинників, синтезований телехельний полі(3-гліцидоксипропілтриметоксисилан) з кінцевими ацетатними та метакрилатними групами. Замість електрофільних каталізаторів, таких як кислоти Бронстеда та Льюїса, дуже шкідливих та корозійних, як каталізатор процесу використано екологічний твердий Magnite-H+ (Mag-H+), який є йонообмінною силікатною глиною з монтморилоніту. Структуру отриманих макромономерів підтверджено методами інфрачервоної спектроскопії Фур'є, ядерно-магнітного резонансу та УФ-спектроскопії. Наявність кінцевих груп біс-макромономерів метакрилату визначено за допомогою УФ-спектроскопії. Встановлено оптимальні умови реакції, досліджено вплив часу реакції та кількості ангідридів (АА та МА) на вихід макромономерів. | |
dc.description.abstract | Telechelic poly(3-glycidoxypropyltrimetho¬xysilane) (PGPTMS) with acetate and methacrylate end groups was successfully synthesized by an efficient and solvent-free approach, with anhydrides (acetic anhydride (AA) and methacrylic anhydride (MA)), by cationic ring-opening polymerization of 3 glycidoxypropyltrimetho-xysilane (GPTMS), using an ecologic solid catalyst Maghnite-H+ (Mag-H+), instead of electrophilic catalysts, such as, Bronsted and Lewis acids which are very noxious and corrosive. Mag-H+ is a montmorillonite sheet silicate clay exchanged with protons. The structure of the obtained macromonomers was confirmed by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and UV-visible spectroscopy. The presence of the methacrylate end groups of bis-macromonomers was determined by UV-visible spectroscopy. In order to find the optimal reaction conditions, effects of reaction time and the amount of anhydrides (AA and MA) on the yield of macromonomers were investigated. | |
dc.format.extent | 60-69 | |
dc.format.pages | 10 | |
dc.identifier.citation | Embarek N. Green Synthesis of Functionalized Poly(3-Glycidoxypropyl-Trimethoxysilane) Using an Eco-Catalyst (Treated Montmorillonite) / Nadia Embarek, Nabahat Sahli // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 60–69. | |
dc.identifier.citationen | Embarek N. Green Synthesis of Functionalized Poly(3-Glycidoxypropyl-Trimethoxysilane) Using an Eco-Catalyst (Treated Montmorillonite) / Nadia Embarek, Nabahat Sahli // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 1. — P. 60–69. | |
dc.identifier.doi | doi.org/10.23939/chcht17.01.060 | |
dc.identifier.issn | 1196-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61230 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 1 (17), 2023 | |
dc.relation.references | [1] Rempp, P.; Franta, E. Macromonomers: Synthesis, Characterization and Applications. In Advances in Polymer Science; Springer: Berlin, Heidelberg, 1984; Vol 58, pp 1-53. https://doi.org/10.1007/3-540-12793-3_6 | |
dc.relation.references | [2] Chujo,Y.; Yamashita, Y.: Telechelic Polymers. Synthesis and Applications; CRC Press: Boca Raton, 1989. | |
dc.relation.references | [3] DeClercq, R.; Goethals, E.: Polymer Networks Containing Degradable Polyacetal Segments. Macromolecules, 1992, 25, 1109-1113. https://doi.org/10.1021/ma00029a016 | |
dc.relation.references | [4] Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary Perspective: Polymers with Complex Architectures. Macromolecules, 2017, 50, 1253-1290. https://doi.org/10.1021/acs.macromol.6b02569 | |
dc.relation.references | [5] Franta, E.; Lutz, P.; Reibel, L.; Sahli, N.; OuldKada, S.; Belbachir, M. Functionalization of Poly(1,3-Dioxolane). Macromol. Symp. 1994, 85, 167-174. https://doi.org/10.1002/masy.19940850112 | |
dc.relation.references | [6] Reguieg, F.; Sahli, N.; Belbachir, M.; Lutz, P. One-Step Synthesis of Bis-Macromonomers of Poly(1,3-Dioxolane) Catalyzed by Maghnite-H+. J. Appl.Polym. Sci. 2006, 99, 3147-3152. https://doi.org/10.1002/app.22935 | |
dc.relation.references | [7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. Polymerization of Ethylene Glycol Dimethacrylate (EGDM), Using an Algerian Clay as Eco-catalyst (Maghnite-H+ and Maghnite-Na+). Bull. Chem. React. Eng. Catal. 2020, 15, 221-230. https://doi.org/10.9767/bcrec.15.1.6297.221-230 | |
dc.relation.references | [8] Hydrogels in Medicine and Pharmacy. Fundamentals. Peppas, N., Eds.;CRC Press: Boca Raton, 1987. https://doi.org/10.1201/9780429285097 | |
dc.relation.references | [9] Peppas,N.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharmac. Biopharmac. 2000, 50, 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4 | |
dc.relation.references | [10] Lutz, P. Free Radical Homopolymerization, in Heterogeneous Medium, of Linear and Star-Shaped Polymerizable Amphiphilic Poly(Ethers): A New Way to Design Hydrogels Well Suited for Biomedical Applications. Macromol. Symp. 2001, 164, 277-292. https://doi.org/10.1002/1521-3900(200102)164:1<277::AID-MASY277>3.0.CO;2-E | |
dc.relation.references | [11] Lutolf, M.; Reaber, G.; Zisch, A.; Tirelli, N.; Hubbell, J.A. Cell-Responsive Synthetic Hydrogels. Adv. Mater., 2003, 15, 888-892. https://doi.org/10.1002/adma.200304621 | |
dc.relation.references | [12] Sahli, N.; Belbachir, M.; Lutz, P. Design and Properties of Degradable Networks Based on Free Radical Copolymerization of Poly(1,3-dioxolane) Macromonomers with Hydrophobic or Hydrophilic Comonomers in Water. Macromol. Chem. Phys. 2005, 206, 1257-1270. https://doi.org/10.1002/macp.200500045 | |
dc.relation.references | [13] Reguieg, F.; Sahli, N.; Belbachir, M. Nanocomposite Hydrogels Based on Water Soluble Polymer and Montmorillonite-Na+. Orient. J. Chem. [Online] 2015, 31(3). https://doi.org/10.13005/ojc/310343 (accessed July 07, 2021) | |
dc.relation.references | [14] Reguieg, F.; Sahli, N.; Belbachir, M. Hydrogel Composite of Poly(Vinylalcohol) with Unmodified Montmorillonite. Curr. Chem. Lett. 2017, 2, 69-76. https://doi.org/10.5267/j.ccl.2016.11.005 | |
dc.relation.references | [15] Li, L.; He, B.; Chen, X. Epoxylsilane Crosslinking of Rigid Poly(Vinyl Chloride). J. Appl. Polym. Sci. 2007, 106, 3610-3616. https://doi.org/10.1002/app.26890 | |
dc.relation.references | [16] Tian, M.; Liang, W.; Rao, G.; Zhang, L.; Guo, C.Surface Modification of Fibrillar Silicate and its Reinforcing Mechanism on FS/Rubber Composites. Compos. Sci. Technol. 2005, 65, 1129-1138. https://doi.org/10.1016/j.compscitech.2004.11.008 | |
dc.relation.references | [17] Zhang, H.; Zhang, Z.; Guo, F.; Liu, W.M. Friction and Wear Behavior of the Hybrid PTFE/Cotton Fabric Composites Filled with TiO2 Nanoparticles and Modified TiO2 Nanoparticles. Polym. Eng. Sci. 2009, 49, 115-122. https://doi.org/10.1002/pen.21228 | |
dc.relation.references | [18] Gabrielli, L.; Russo, L.; Poveda, A.; Jones, J.R.; Nicotra, F.; Jiménez-Barbero, J.; Cipolla, L. Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chem. Eur. J. 2013, 19, 7856-7864. https://doi.org/10.1002/chem.201204326 | |
dc.relation.references | [19] Innocenzi, P.; Brusatin, G.; Babonneau, F. Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. Chem. Mater. 2000, 12, 3726-3732. https://doi.org/10.1021/cm001139b | |
dc.relation.references | [20] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Bertani, R. New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organic−Inorganic Materials. Chem. Mater. 1999, 11, 1672-1679. https://doi.org/10.1021/cm980734z | |
dc.relation.references | [21] Innocenzi, P.; Esposto, M.; Maddalena, A. Mechanical Properties of 3-Glycidoxypropyltrimethoxysilane Based Hybrid Organic-Inorganic Materials. J. Sol-Gel Sci. Technol. 2001, 20, 293-301. https://doi.org/10.1023/A:1008782203971 | |
dc.relation.references | [22] Innocenzi, P.; Sassi, A.; Brusatin, G.; Guglielmi, M.; Favretto, D.; Bertani, R.; Venzo, A.; Babonneau, F. A Novel Synthesis of Sol−Gel Hybrid Materials by a Nonhydrolytic/Hydrolytic Reaction of (3-Glycidoxypropyl)trimethoxysilane with TiCl4. Chem. Mater. 2001, 13, 3635-3643. https://doi.org/10.1021/cm011034o | |
dc.relation.references | [23] Schmidt, H. New Type of Non-Crystalline Solids between Inorganic and Organic Materials. J. Non-Cryst. Solids, 1985, 73, 681-691. https://doi.org/10.1016/0022-3093(85)90388-6 | |
dc.relation.references | [24] Schmidt, H. Multifunctional Inorganic-Organic Composite Sol-Gel Coatings for Glass Surfaces. J. Non-Cryst. Solids, 1994, 178, 302-312. https://doi.org/10.1016/0022-3093(94)90299-2 | |
dc.relation.references | [25] Embarek, N.; Sahli, N. A Novel Green Synthesis Method of Poly(3-Glycidoxypropyltrimethoxysilane) Catalyzed by Treated Bentonite. Bull. Chem. React. Eng. Catal. 2020, 15, 290-303. https://doi.org/10.9767/bcrec.15.2.6568.290-303 | |
dc.relation.references | [26] Popall, M.; Durand, H. Inorganic-Organic Copolymers as Solid State Li+ Electrolytes. Electrochim. Acta 1992, 37, 1593-1597. https://doi.org/10.1016/0013-4686(92)80118-6 | |
dc.relation.references | [27] Riegel, B.; Blittersdorf, S.; Kiefer, W.; Hofacker, S.; Müller, M.; Schottner, G. Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyltrimethoxysilane/Aminopropyltriethoxy-Silane System by Means of FT-Raman Spectroscopy I. J. Non-Cryst. Solids 1998, 226, 76-84. https://doi.org/10.1016/S0022-3093(97)00487-0 | |
dc.relation.references | [28] Sforca, M.; Yoshida, I.; Nunes, S. Organic–Inorganic Membranes Prepared from Polyether Diamine and Epoxy Silane. J. Membr. Sci. 1999, 159, 197-207. https://doi.org/10.1016/S0376-7388(99)00059-9 | |
dc.relation.references | [29] Sorek, Y.; Zevin, M.; Reisfeld, R.; Hurvits, T.; Ruschin, S. Zirconia and Zirconia−ORMOSIL Planar Waveguides Prepared at Room Temperature. Chem. Mater. 1997, 9, 670-676. https://doi.org/10.1021/cm960135x | |
dc.relation.references | [30] Innocenzi, P.; Martucci, A.; Guglielmi, M.; Armelao, L.; Pelli S.; Righini, G.; Battaglin, G. Optical and Surface Properties of Inorganic and Hybrid Organic–Inorganic Silica–Titania Sol–Gel Planar Waveguides. J. Non-Cryst. Solids 1999, 259, 182-190. https://doi.org/10.1016/S0022-3093(99)00534-7 | |
dc.relation.references | [31] Brusatin, G.; Innocenzi, P.; Guglielmi, M.; Bozio, R.; Meneghetti, M.; Signorini, R.; Maggini, M.;Scorrano, G.;Prato, M. γ(Glicydoxypropyl)-Trymethoxysilane-Based Matrices Tailored for Optical Limiting Applications. In Proc. SPIE 3803, Materials and Devices for Photonic Circuits, Denver, USA, July 18-23, 1999; Armenise, M.N., Pecorella, W., Hubert-Pfalzgraf, L.-G., Najafi S.I., Eds.; Vol. 3803, p 90. https://doi.org/10.1117/12.366748 | |
dc.relation.references | [32] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Signorini, R.; Bozio, R.; Maggini, M. 3-(Glycidoxypropyl)-Trimethoxysilane–TiO2 Hybrid Organic–Inorganic Materials for Optical Limiting. J. Non-Cryst. Solids 2002, 65, 68-74. https://doi.org/10.1016/S0022-3093(99)00898-4 | |
dc.relation.references | [33] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Signorini, R.; Meneghetti, M.; Bozio, R.; Maggini, M.; Scorrano, G.; Prato M. Optical Limiting Devices Based on C6o Derivatives in Sol-Gel Hybrid Organic-Inorganic Materials. J. Sol-Gel Sci. Technol. 2000, 19, 263-266. https://doi.org/10.1023/A:1008704825802 | |
dc.relation.references | [34] Signorini, R.; Meneghetti; M.; Bozio, R.; Maggini, M., Scorrano, G.; Prato, M.; Guglielmi, M. Optical Limiting and Non Linear Optical Properties of Fullerene Derivatives Embedded in Hybrid Sol-Gel Glasses. Carbon 2000, 38, 1653-1662. https://doi.org/10.1016/S0008-6223(00)00055-5 | |
dc.relation.references | [35] Casalboni, M.; De Matteis, F.; Prosposito, P.; Pizzoferrato, R. Optical Investigation of Infrared Dyes in Hybrid Thin Films. Appl. Phys. Lett. 1999, 75, 2172. https://doi.org/10.1063/1.124955 | |
dc.relation.references | [36] Pomogailo, A.D. Polymer Sol-Gel Synthesis of Hybrid Nanocomposites. Colloid J. 2005, 67, 658-677. https://doi.org/10.1007/s10595-005-0148-7 | |
dc.relation.references | [37] Inorganic and Organometallic Polymers with Special Properties. Laine, R.M., Eds.; Springer: Netherlands, 2012. https://doi.org/10.1007/978-94-011-2612-0 | |
dc.relation.references | [38] Harrane, A.; Meghabar, R.; Belbachir, M. A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization. Int. J. Mol. Sci. 2002, 3, 790-800. https://doi.org/10.3390/i3070790 | |
dc.relation.references | [39] Belbachir, M.;Bensaoula, A. Composition and Method for Catalysis Using Bentonites. US Patent 6274527B1, Aug 14, 2001. | |
dc.relation.references | [40] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonites. US Patent 0069446A1, Oct 04, 2003. | |
dc.relation.references | [41] Beloufa, K.; Sahli, N.; Belbachir, M. Synthesis of Copolymer from 1,3,5-Trioxane and 1,3-Dioxolane Catalyzed by Maghnite-H+. J. Appl. Polym. Sci. 2010, 115, 2820-2827. https://doi.org/10.1002/app.30901 | |
dc.relation.references | [42] Bennabi, S.; Sahli, N.; Belbachir, M.; Brachais, C.-H.; Boni, G.; Couvercelle, J.-P. New Approach for Synthesis of Poly(Ethylglyoxylate) Using Maghnite-H+, an Algerian Proton Exchanged Montmorillonite Clay, as an Eco-Catalyst. J. Macromol. Sci. A 2017, 54, 843-852. https://doi.org/10.1080/10601325.2017.1339558 | |
dc.relation.references | [43] Derdar, H.; Belbachir, M.; Harrane, A. A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 69-78. https://doi.org/10.9767/bcrec.14.1.2692.69-78 | |
dc.relation.references | [44] Seghier, S.;Belbachir, M. Degradation of Poly(3-(Oxiran-2-ylmethyl)Oxazolidin-2-one) in the Presence of an Algerian Activated Clay. Iran J. Sci. Technol. Trans. A Sci. 2019, 43, 1545-1550. https://doi.org/10.1007/s40995-018-0629-2 | |
dc.relation.references | [45] Hennaoui, F.; Belbachir, M. A Green One-pot Synthesis of PDMS Bis-Macromonomers Using an Ecologic Catalyst (Maghnite-H+). J. Macromol. Sci. A 2015, 52, 992-1001. https://doi.org/10.1080/10601325.2015.1095602 | |
dc.relation.references | [46] Breen, C.; Madejová, J.; Komadel, P. Characterisation of Moderately Acid-Treated, Size-Fractionated Montmorillonites Using IR and MAS NMR Spectroscopy and Thermal Analysis. J. Mater. Chem. 1995, 5, 469-474. https://doi.org/10.1039/JM9950500469 | |
dc.relation.references | [47] Číčel, B.; Komadel, P.; Bednáriková, E.; Madejová, J. Mineralogical Composition and Distribution of Si, Al, Fe, Mg, and Ca in the Fine Fractions of Some Czech and Slovak Bentonites. Geol. Carpath. Clays 1992, 1, 3-7. | |
dc.relation.references | [48] Farmer, V.C. The Infrared Spectra of Minerals. Mineralogical society: London, 1974. https://doi.org/10.1180/mono-4 | |
dc.relation.references | [49] CRC Atlas of Spectral Data and Physical Constants for Organic Compounds; Grasselli, J.G.; Ritchey, W.M., Eds.; CRC Press: Cleveland, 1973. | |
dc.relation.references | [50] Wang, J.; Fan, X.; Tian, W.; Wang, Y.; Li, J. Ring-Opening Polymerization of γ-Glycidoxypropyltrimethoxysilane Catalyzed by Multi-Metal Cyanide Catalyst. J. Polym. Res. 2011, 18, 2133-2139. https://doi.org/10.1007/s10965-011-9623-5 | |
dc.relation.referencesen | [1] Rempp, P.; Franta, E. Macromonomers: Synthesis, Characterization and Applications. In Advances in Polymer Science; Springer: Berlin, Heidelberg, 1984; Vol 58, pp 1-53. https://doi.org/10.1007/3-540-12793-3_6 | |
dc.relation.referencesen | [2] Chujo,Y.; Yamashita, Y., Telechelic Polymers. Synthesis and Applications; CRC Press: Boca Raton, 1989. | |
dc.relation.referencesen | [3] DeClercq, R.; Goethals, E., Polymer Networks Containing Degradable Polyacetal Segments. Macromolecules, 1992, 25, 1109-1113. https://doi.org/10.1021/ma00029a016 | |
dc.relation.referencesen | [4] Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary Perspective: Polymers with Complex Architectures. Macromolecules, 2017, 50, 1253-1290. https://doi.org/10.1021/acs.macromol.6b02569 | |
dc.relation.referencesen | [5] Franta, E.; Lutz, P.; Reibel, L.; Sahli, N.; OuldKada, S.; Belbachir, M. Functionalization of Poly(1,3-Dioxolane). Macromol. Symp. 1994, 85, 167-174. https://doi.org/10.1002/masy.19940850112 | |
dc.relation.referencesen | [6] Reguieg, F.; Sahli, N.; Belbachir, M.; Lutz, P. One-Step Synthesis of Bis-Macromonomers of Poly(1,3-Dioxolane) Catalyzed by Maghnite-H+. J. Appl.Polym. Sci. 2006, 99, 3147-3152. https://doi.org/10.1002/app.22935 | |
dc.relation.referencesen | [7] Haoue, S.; Derdar, H.; Belbachir, M.; Harrane, A. Polymerization of Ethylene Glycol Dimethacrylate (EGDM), Using an Algerian Clay as Eco-catalyst (Maghnite-H+ and Maghnite-Na+). Bull. Chem. React. Eng. Catal. 2020, 15, 221-230. https://doi.org/10.9767/bcrec.15.1.6297.221-230 | |
dc.relation.referencesen | [8] Hydrogels in Medicine and Pharmacy. Fundamentals. Peppas, N., Eds.;CRC Press: Boca Raton, 1987. https://doi.org/10.1201/9780429285097 | |
dc.relation.referencesen | [9] Peppas,N.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharmac. Biopharmac. 2000, 50, 27-46. https://doi.org/10.1016/S0939-6411(00)00090-4 | |
dc.relation.referencesen | [10] Lutz, P. Free Radical Homopolymerization, in Heterogeneous Medium, of Linear and Star-Shaped Polymerizable Amphiphilic Poly(Ethers): A New Way to Design Hydrogels Well Suited for Biomedical Applications. Macromol. Symp. 2001, 164, 277-292. https://doi.org/10.1002/1521-3900(200102)164:1<277::AID-MASY277>3.0.CO;2-E | |
dc.relation.referencesen | [11] Lutolf, M.; Reaber, G.; Zisch, A.; Tirelli, N.; Hubbell, J.A. Cell-Responsive Synthetic Hydrogels. Adv. Mater., 2003, 15, 888-892. https://doi.org/10.1002/adma.200304621 | |
dc.relation.referencesen | [12] Sahli, N.; Belbachir, M.; Lutz, P. Design and Properties of Degradable Networks Based on Free Radical Copolymerization of Poly(1,3-dioxolane) Macromonomers with Hydrophobic or Hydrophilic Comonomers in Water. Macromol. Chem. Phys. 2005, 206, 1257-1270. https://doi.org/10.1002/macp.200500045 | |
dc.relation.referencesen | [13] Reguieg, F.; Sahli, N.; Belbachir, M. Nanocomposite Hydrogels Based on Water Soluble Polymer and Montmorillonite-Na+. Orient. J. Chem. [Online] 2015, 31(3). https://doi.org/10.13005/ojc/310343 (accessed July 07, 2021) | |
dc.relation.referencesen | [14] Reguieg, F.; Sahli, N.; Belbachir, M. Hydrogel Composite of Poly(Vinylalcohol) with Unmodified Montmorillonite. Curr. Chem. Lett. 2017, 2, 69-76. https://doi.org/10.5267/j.ccl.2016.11.005 | |
dc.relation.referencesen | [15] Li, L.; He, B.; Chen, X. Epoxylsilane Crosslinking of Rigid Poly(Vinyl Chloride). J. Appl. Polym. Sci. 2007, 106, 3610-3616. https://doi.org/10.1002/app.26890 | |
dc.relation.referencesen | [16] Tian, M.; Liang, W.; Rao, G.; Zhang, L.; Guo, C.Surface Modification of Fibrillar Silicate and its Reinforcing Mechanism on FS/Rubber Composites. Compos. Sci. Technol. 2005, 65, 1129-1138. https://doi.org/10.1016/j.compscitech.2004.11.008 | |
dc.relation.referencesen | [17] Zhang, H.; Zhang, Z.; Guo, F.; Liu, W.M. Friction and Wear Behavior of the Hybrid PTFE/Cotton Fabric Composites Filled with TiO2 Nanoparticles and Modified TiO2 Nanoparticles. Polym. Eng. Sci. 2009, 49, 115-122. https://doi.org/10.1002/pen.21228 | |
dc.relation.referencesen | [18] Gabrielli, L.; Russo, L.; Poveda, A.; Jones, J.R.; Nicotra, F.; Jiménez-Barbero, J.; Cipolla, L. Epoxide Opening versus Silica Condensation during Sol–Gel Hybrid Biomaterial Synthesis. Chem. Eur. J. 2013, 19, 7856-7864. https://doi.org/10.1002/chem.201204326 | |
dc.relation.referencesen | [19] Innocenzi, P.; Brusatin, G.; Babonneau, F. Competitive Polymerization between Organic and Inorganic Networks in Hybrid Materials. Chem. Mater. 2000, 12, 3726-3732. https://doi.org/10.1021/cm001139b | |
dc.relation.referencesen | [20] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Bertani, R. New Synthetic Route to (3-Glycidoxypropyl)trimethoxysilane-Based Hybrid Organic−Inorganic Materials. Chem. Mater. 1999, 11, 1672-1679. https://doi.org/10.1021/cm980734z | |
dc.relation.referencesen | [21] Innocenzi, P.; Esposto, M.; Maddalena, A. Mechanical Properties of 3-Glycidoxypropyltrimethoxysilane Based Hybrid Organic-Inorganic Materials. J. Sol-Gel Sci. Technol. 2001, 20, 293-301. https://doi.org/10.1023/A:1008782203971 | |
dc.relation.referencesen | [22] Innocenzi, P.; Sassi, A.; Brusatin, G.; Guglielmi, M.; Favretto, D.; Bertani, R.; Venzo, A.; Babonneau, F. A Novel Synthesis of Sol−Gel Hybrid Materials by a Nonhydrolytic/Hydrolytic Reaction of (3-Glycidoxypropyl)trimethoxysilane with TiCl4. Chem. Mater. 2001, 13, 3635-3643. https://doi.org/10.1021/cm011034o | |
dc.relation.referencesen | [23] Schmidt, H. New Type of Non-Crystalline Solids between Inorganic and Organic Materials. J. Non-Cryst. Solids, 1985, 73, 681-691. https://doi.org/10.1016/0022-3093(85)90388-6 | |
dc.relation.referencesen | [24] Schmidt, H. Multifunctional Inorganic-Organic Composite Sol-Gel Coatings for Glass Surfaces. J. Non-Cryst. Solids, 1994, 178, 302-312. https://doi.org/10.1016/0022-3093(94)90299-2 | |
dc.relation.referencesen | [25] Embarek, N.; Sahli, N. A Novel Green Synthesis Method of Poly(3-Glycidoxypropyltrimethoxysilane) Catalyzed by Treated Bentonite. Bull. Chem. React. Eng. Catal. 2020, 15, 290-303. https://doi.org/10.9767/bcrec.15.2.6568.290-303 | |
dc.relation.referencesen | [26] Popall, M.; Durand, H. Inorganic-Organic Copolymers as Solid State Li+ Electrolytes. Electrochim. Acta 1992, 37, 1593-1597. https://doi.org/10.1016/0013-4686(92)80118-6 | |
dc.relation.referencesen | [27] Riegel, B.; Blittersdorf, S.; Kiefer, W.; Hofacker, S.; Müller, M.; Schottner, G. Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyltrimethoxysilane/Aminopropyltriethoxy-Silane System by Means of FT-Raman Spectroscopy I. J. Non-Cryst. Solids 1998, 226, 76-84. https://doi.org/10.1016/S0022-3093(97)00487-0 | |
dc.relation.referencesen | [28] Sforca, M.; Yoshida, I.; Nunes, S. Organic–Inorganic Membranes Prepared from Polyether Diamine and Epoxy Silane. J. Membr. Sci. 1999, 159, 197-207. https://doi.org/10.1016/S0376-7388(99)00059-9 | |
dc.relation.referencesen | [29] Sorek, Y.; Zevin, M.; Reisfeld, R.; Hurvits, T.; Ruschin, S. Zirconia and Zirconia−ORMOSIL Planar Waveguides Prepared at Room Temperature. Chem. Mater. 1997, 9, 670-676. https://doi.org/10.1021/cm960135x | |
dc.relation.referencesen | [30] Innocenzi, P.; Martucci, A.; Guglielmi, M.; Armelao, L.; Pelli S.; Righini, G.; Battaglin, G. Optical and Surface Properties of Inorganic and Hybrid Organic–Inorganic Silica–Titania Sol–Gel Planar Waveguides. J. Non-Cryst. Solids 1999, 259, 182-190. https://doi.org/10.1016/S0022-3093(99)00534-7 | |
dc.relation.referencesen | [31] Brusatin, G.; Innocenzi, P.; Guglielmi, M.; Bozio, R.; Meneghetti, M.; Signorini, R.; Maggini, M.;Scorrano, G.;Prato, M. g(Glicydoxypropyl)-Trymethoxysilane-Based Matrices Tailored for Optical Limiting Applications. In Proc. SPIE 3803, Materials and Devices for Photonic Circuits, Denver, USA, July 18-23, 1999; Armenise, M.N., Pecorella, W., Hubert-Pfalzgraf, L.-G., Najafi S.I., Eds.; Vol. 3803, p 90. https://doi.org/10.1117/12.366748 | |
dc.relation.referencesen | [32] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Signorini, R.; Bozio, R.; Maggini, M. 3-(Glycidoxypropyl)-Trimethoxysilane–TiO2 Hybrid Organic–Inorganic Materials for Optical Limiting. J. Non-Cryst. Solids 2002, 65, 68-74. https://doi.org/10.1016/S0022-3093(99)00898-4 | |
dc.relation.referencesen | [33] Innocenzi, P.; Brusatin, G.; Guglielmi, M.; Signorini, R.; Meneghetti, M.; Bozio, R.; Maggini, M.; Scorrano, G.; Prato M. Optical Limiting Devices Based on P.6o Derivatives in Sol-Gel Hybrid Organic-Inorganic Materials. J. Sol-Gel Sci. Technol. 2000, 19, 263-266. https://doi.org/10.1023/A:1008704825802 | |
dc.relation.referencesen | [34] Signorini, R.; Meneghetti; M.; Bozio, R.; Maggini, M., Scorrano, G.; Prato, M.; Guglielmi, M. Optical Limiting and Non Linear Optical Properties of Fullerene Derivatives Embedded in Hybrid Sol-Gel Glasses. Carbon 2000, 38, 1653-1662. https://doi.org/10.1016/S0008-6223(00)00055-5 | |
dc.relation.referencesen | [35] Casalboni, M.; De Matteis, F.; Prosposito, P.; Pizzoferrato, R. Optical Investigation of Infrared Dyes in Hybrid Thin Films. Appl. Phys. Lett. 1999, 75, 2172. https://doi.org/10.1063/1.124955 | |
dc.relation.referencesen | [36] Pomogailo, A.D. Polymer Sol-Gel Synthesis of Hybrid Nanocomposites. Colloid J. 2005, 67, 658-677. https://doi.org/10.1007/s10595-005-0148-7 | |
dc.relation.referencesen | [37] Inorganic and Organometallic Polymers with Special Properties. Laine, R.M., Eds.; Springer: Netherlands, 2012. https://doi.org/10.1007/978-94-011-2612-0 | |
dc.relation.referencesen | [38] Harrane, A.; Meghabar, R.; Belbachir, M. A Protons Exchanged Montmorillonite Clay as an Efficient Catalyst for the Reaction of Isobutylene Polymerization. Int. J. Mol. Sci. 2002, 3, 790-800. https://doi.org/10.3390/i3070790 | |
dc.relation.referencesen | [39] Belbachir, M.;Bensaoula, A. Composition and Method for Catalysis Using Bentonites. US Patent 6274527B1, Aug 14, 2001. | |
dc.relation.referencesen | [40] Belbachir, M.; Bensaoula, A. Composition and Method for Catalysis Using Bentonites. US Patent 0069446A1, Oct 04, 2003. | |
dc.relation.referencesen | [41] Beloufa, K.; Sahli, N.; Belbachir, M. Synthesis of Copolymer from 1,3,5-Trioxane and 1,3-Dioxolane Catalyzed by Maghnite-H+. J. Appl. Polym. Sci. 2010, 115, 2820-2827. https://doi.org/10.1002/app.30901 | |
dc.relation.referencesen | [42] Bennabi, S.; Sahli, N.; Belbachir, M.; Brachais, C.-H.; Boni, G.; Couvercelle, J.-P. New Approach for Synthesis of Poly(Ethylglyoxylate) Using Maghnite-H+, an Algerian Proton Exchanged Montmorillonite Clay, as an Eco-Catalyst. J. Macromol. Sci. A 2017, 54, 843-852. https://doi.org/10.1080/10601325.2017.1339558 | |
dc.relation.referencesen | [43] Derdar, H.; Belbachir, M.; Harrane, A. A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst. Bull. Chem. React. Eng. Catal. 2019, 14, 69-78. https://doi.org/10.9767/bcrec.14.1.2692.69-78 | |
dc.relation.referencesen | [44] Seghier, S.;Belbachir, M. Degradation of Poly(3-(Oxiran-2-ylmethyl)Oxazolidin-2-one) in the Presence of an Algerian Activated Clay. Iran J. Sci. Technol. Trans. A Sci. 2019, 43, 1545-1550. https://doi.org/10.1007/s40995-018-0629-2 | |
dc.relation.referencesen | [45] Hennaoui, F.; Belbachir, M. A Green One-pot Synthesis of PDMS Bis-Macromonomers Using an Ecologic Catalyst (Maghnite-H+). J. Macromol. Sci. A 2015, 52, 992-1001. https://doi.org/10.1080/10601325.2015.1095602 | |
dc.relation.referencesen | [46] Breen, C.; Madejová, J.; Komadel, P. Characterisation of Moderately Acid-Treated, Size-Fractionated Montmorillonites Using IR and MAS NMR Spectroscopy and Thermal Analysis. J. Mater. Chem. 1995, 5, 469-474. https://doi.org/10.1039/JM9950500469 | |
dc.relation.referencesen | [47] Číčel, B.; Komadel, P.; Bednáriková, E.; Madejová, J. Mineralogical Composition and Distribution of Si, Al, Fe, Mg, and Ca in the Fine Fractions of Some Czech and Slovak Bentonites. Geol. Carpath. Clays 1992, 1, 3-7. | |
dc.relation.referencesen | [48] Farmer, V.C. The Infrared Spectra of Minerals. Mineralogical society: London, 1974. https://doi.org/10.1180/mono-4 | |
dc.relation.referencesen | [49] CRC Atlas of Spectral Data and Physical Constants for Organic Compounds; Grasselli, J.G.; Ritchey, W.M., Eds.; CRC Press: Cleveland, 1973. | |
dc.relation.referencesen | [50] Wang, J.; Fan, X.; Tian, W.; Wang, Y.; Li, J. Ring-Opening Polymerization of g-Glycidoxypropyltrimethoxysilane Catalyzed by Multi-Metal Cyanide Catalyst. J. Polym. Res. 2011, 18, 2133-2139. https://doi.org/10.1007/s10965-011-9623-5 | |
dc.relation.uri | https://doi.org/10.1007/3-540-12793-3_6 | |
dc.relation.uri | https://doi.org/10.1021/ma00029a016 | |
dc.relation.uri | https://doi.org/10.1021/acs.macromol.6b02569 | |
dc.relation.uri | https://doi.org/10.1002/masy.19940850112 | |
dc.relation.uri | https://doi.org/10.1002/app.22935 | |
dc.relation.uri | https://doi.org/10.9767/bcrec.15.1.6297.221-230 | |
dc.relation.uri | https://doi.org/10.1201/9780429285097 | |
dc.relation.uri | https://doi.org/10.1016/S0939-6411(00)00090-4 | |
dc.relation.uri | https://doi.org/10.1002/1521-3900(200102)164:1<277::AID-MASY277>3.0.CO;2-E | |
dc.relation.uri | https://doi.org/10.1002/adma.200304621 | |
dc.relation.uri | https://doi.org/10.1002/macp.200500045 | |
dc.relation.uri | https://doi.org/10.13005/ojc/310343 | |
dc.relation.uri | https://doi.org/10.5267/j.ccl.2016.11.005 | |
dc.relation.uri | https://doi.org/10.1002/app.26890 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2004.11.008 | |
dc.relation.uri | https://doi.org/10.1002/pen.21228 | |
dc.relation.uri | https://doi.org/10.1002/chem.201204326 | |
dc.relation.uri | https://doi.org/10.1021/cm001139b | |
dc.relation.uri | https://doi.org/10.1021/cm980734z | |
dc.relation.uri | https://doi.org/10.1023/A:1008782203971 | |
dc.relation.uri | https://doi.org/10.1021/cm011034o | |
dc.relation.uri | https://doi.org/10.1016/0022-3093(85)90388-6 | |
dc.relation.uri | https://doi.org/10.1016/0022-3093(94)90299-2 | |
dc.relation.uri | https://doi.org/10.9767/bcrec.15.2.6568.290-303 | |
dc.relation.uri | https://doi.org/10.1016/0013-4686(92)80118-6 | |
dc.relation.uri | https://doi.org/10.1016/S0022-3093(97)00487-0 | |
dc.relation.uri | https://doi.org/10.1016/S0376-7388(99)00059-9 | |
dc.relation.uri | https://doi.org/10.1021/cm960135x | |
dc.relation.uri | https://doi.org/10.1016/S0022-3093(99)00534-7 | |
dc.relation.uri | https://doi.org/10.1117/12.366748 | |
dc.relation.uri | https://doi.org/10.1016/S0022-3093(99)00898-4 | |
dc.relation.uri | https://doi.org/10.1023/A:1008704825802 | |
dc.relation.uri | https://doi.org/10.1016/S0008-6223(00)00055-5 | |
dc.relation.uri | https://doi.org/10.1063/1.124955 | |
dc.relation.uri | https://doi.org/10.1007/s10595-005-0148-7 | |
dc.relation.uri | https://doi.org/10.1007/978-94-011-2612-0 | |
dc.relation.uri | https://doi.org/10.3390/i3070790 | |
dc.relation.uri | https://doi.org/10.1002/app.30901 | |
dc.relation.uri | https://doi.org/10.1080/10601325.2017.1339558 | |
dc.relation.uri | https://doi.org/10.9767/bcrec.14.1.2692.69-78 | |
dc.relation.uri | https://doi.org/10.1007/s40995-018-0629-2 | |
dc.relation.uri | https://doi.org/10.1080/10601325.2015.1095602 | |
dc.relation.uri | https://doi.org/10.1039/JM9950500469 | |
dc.relation.uri | https://doi.org/10.1180/mono-4 | |
dc.relation.uri | https://doi.org/10.1007/s10965-011-9623-5 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Embarek N., Sahli N., 2023 | |
dc.subject | функціональний полімер | |
dc.subject | 3-гліцидоксипропілтриметоксисилан | |
dc.subject | монтморилоніт | |
dc.subject | екокаталізатор | |
dc.subject | катіонна полімеризація | |
dc.subject | functionalized polymer | |
dc.subject | 3-glycidoxypropyltrimetoxysilane | |
dc.subject | montmorillonite | |
dc.subject | eco-catalyst | |
dc.subject | cationic polymerization | |
dc.title | Green Synthesis of Functionalized Poly(3-Glycidoxypropyl-Trimethoxysilane) Using an Eco-Catalyst (Treated Montmorillonite) | |
dc.title.alternative | Зелений синтез функціоналізованого полі(3-гліцидоксипропіл-триметоксисилану) з використанням екокаталізатора (оброблений монтморилоніт) | |
dc.type | Article |
Files
License bundle
1 - 1 of 1