Ways and Methods of Improving the Effciency of Overhead Power Line

dc.citation.epage25
dc.citation.issue2
dc.citation.spage18
dc.contributor.affiliationOdessa Polytechnic State University
dc.contributor.authorСавєльєв, Артем
dc.contributor.authorSaveliev, Artem
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-26T08:15:43Z
dc.date.available2023-04-26T08:15:43Z
dc.date.created2021-10-10
dc.date.issued2021-10-10
dc.description.abstractВ роботі проаналізовано використовувані методи та шляхи підвищення ефективності передачі електроенергії в повітряних лініях електропередачі. Розглянуто роль та місце електричної енергії в загальній структурі енергоспоживання, способи її транспортування, види втрат, які виникають під час транспортування електричної енергії, та шляхи зменшення цих втрат. На підставі літературних джерел досліджено структуру втрат в лініях передачі. У проведеному огляді літератури вказується, що не розглядався такий вид втрат, як втрати за рахунок неузгодженості навантаження з лінією. Проаналізовано шляхи досягнення та можливості підтримання роботи лінії в режимі узгодженого навантаження.
dc.description.abstractAt this article, existing methods and ways to increase the efficiency of electricity transmission in overhead power lines were analyzed. The role and place of electric energy in the general structure of energy consumption, methods of its transportation, types of losses that occur during transportation of electric energy and ways to reduce these losses were considered. On the basis of literature sources the structure of losses in transmission lines was investigated. A literature review indicates that a certain type of losses has been overlooked, that is, losses occurring due to the mismatch of the load with the line. The ways of achieving and possibilities of maintaining the operation of lines in a matched load mode were analyzed. New method of reducing losses by creating a matched load mode in power lines is proposed.
dc.format.extent18-25
dc.format.pages8
dc.identifier.citationSaveliev A. Ways and Methods of Improving the Effciency of Overhead Power Line / Artem Saveliev // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 11. — No 2. — P. 18–25.
dc.identifier.citationenSaveliev A. (2021) Ways and Methods of Improving the Effciency of Overhead Power Line. Computational Problems of Electrical Engineering (Lviv), vol. 11, no 2, pp. 18-25.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58464
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 2 (11), 2021
dc.relation.references[1] “Ukrenergo networks. [online] Available at: https://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/
dc.relation.references[2] Ua.energy. 2021. [online] Available at: https://ua.energy/ wp-content/uploads/2018/03/ PROEKT-Planu-rozvytku-systemy-peredachi-na2019-2028-roky.pdf
dc.relation.references[3] Yearbook.enerdata.net. 2021. World Power consumption | Electricity consumption | Enerdata. [online] Available at: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
dc.relation.references[4] AEMC. 2021. Transmission loss factors. [online] Available at: https://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors
dc.relation.references[5] 2017. Rules of arrangement of electrical installations. Fort Publishing House Kharkiv: Official publication. Ministry of Energy and Coal of Ukraine, p. 760.
dc.relation.references[6] IEA. 2021. Data tables – Data & Statistics - IEA. [online] Available at: https://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018
dc.relation.references[7] A. Gerkusov, S. Bordanov, “Standardization of electricity losses in three-phase electrical networks of power supply systems”, ONU Bulletin. Energy problems 2006, pp. 5–6, 2006.
dc.relation.references[8] A. Gerkusov, “Optimization of losses of the electric power transferred on air lines with a voltage of 110 kV and above”, Scientific and technical information of St. Petersburg State Pedagogical University, no. 1, p. 214, 2015.
dc.relation.references[9] A. Glazunov, G. Shvedov, Design of the district electrical network. Methodical instructions for course design, MEI Publishing House, p. 72, 2010.
dc.relation.references[10] Yu. Zhelezko, The choice of measures to reduce electricity losses in electrical networks: A guide for practical calculations, 1st ed. Energoatomizdat, p.176, 1989.
dc.relation.references[11] СТП 34.09.254 (РД 34.09.254) Instruction on reduction of technological costs of electric energy for transmission on electric networks of power systems and power associations
dc.relation.references[12] P. Krasovsky, D. Tsyplenkov, “Methods and means of reducing technical losses of electricity in the elements of power supply systems”, Electrical engineering and power engineering, no.1, 2015.
dc.relation.references[13] V. Stepanov, V. Kosyrikhin, “Losses of active power in power supply systems and their reduction. Izvestiya TulGU”, Technical sciences, no. 3, 2010.
dc.relation.references[14] F. Shkrabets, P. Krasovsky, Operational dynamics of electricity losses in power supply systems: monograph, Ministry of Education and Science of Ukraine, National Mining University. D. NSU, 2015.
dc.relation.references[15] I. Latypov, V. Sushkov, Reduction of active power losses in wind power transmission lines designed for 6–35 kV, Dynamics of systems, mechanisms and machines (Dynamics), 2016.
dc.relation.references[16] V. Babenko, Provision of reactive power compensation as a warehouse for energy saving. Energy saving. Ener-Getika. Energy audit. no.9 (91), 2011.
dc.relation.references[17] L. Bessonov, “Theoretical foundations of electrical engineering”, Textbook for energy and electrical engineering universities and faculties, 4th ed. Moscow: Higher School Publishing House, 1964.
dc.relation.references[18] T. Edwards, M. Steer, Fundamentals of Signal Transmission on Interconnects, Foundations for Microstrip Circuit Design, pp. 19–50, 2016.
dc.relation.references[19] D. Maevsky, O. Besarab, E. Maevskaya, V. Berzan, and A. Savieliev, “Ways and Reserves of Increasing the Efficiency of Electric Power Transmission Lines”, in Proc. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020.
dc.relation.references[20] X. Zhang, F. Gao, X. Lv, H. Lv, Q. Tian, J. Ma, W.Yin, and J. Dong, “Line loss reduction with distributed energy storage systems”, IEEE PES Innovative Smart Grid Technologies, 2012.
dc.relation.references[21] V. Postolaty, E. Bykova, V. Suslov, L.Timashova, Y. Shakaryan, and S. Kareva, “Controlled Compact High Voltage Power Lines”, Problemele energeticii regionale, no. 30, 2016.
dc.relation.references[22] N. Rakushev, Ultra-long open-loop AC power transmission. MHEU, 1957.
dc.relation.references[23] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, “Controlled compact ac transmission lines”, International conference “Energy of Moldova, Regional aspects of development”, 2012.
dc.relation.references[24] V. Postolaty, E. Bykova, L. Timashova, and Y. Shakaryan, “Main principles of creation and characteristics of controlled self-compensing electric transmission lines”, Electrotechnic and Computer Systems, no. 25(101), 2017.
dc.relation.references[25] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, “Efficiency of the Compact Controlled High -Voltage Power Lines”, Problemele energeticii regional, Electroenergetică, no.3 (29), 2015.
dc.relation.references[26] A. Burman, Y. Rozanov, and Y. Shakaryan, Controlling Electricity Flows and Improving the Efficiency of Electric Power Systems: A Study Guide, 1st ed. Moscow: Publishing house MEI, p. 336, 2012.
dc.relation.references[27] V. Kochkin, and Y. Shakaryan, Application of flexible (controlled) AC power transmission systems in power systems, 1st ed. Moscow: Torus-press, p. 312, 2011.
dc.relation.references[28] J. Verboomen, D. Van Hertem, P. H. Schavemaker, W. L. Kling, and R. Belmans, Phase shifting transformers: Principles and applications, in Future Power Systems (FPS), Amsterdam, the Netherlands, p. 6, November 2005.
dc.relation.references[29] J. Verboomen, Optimization of transmission systems by use of phase shifting transformers, Dissertation, Technische Universiteit Delft, 2008.
dc.relation.references[30] N. Johansson, Control of dynamically assisted phase-shifting transformers. KTH, Stockholm, 2008.
dc.relation.references[31] A. Krämer and J. Ruff, “Transformer for Phase Angle Regulation considering the Selection of On- Load Tap-Changers”, IEEE Transactions on Power Delivery, , no. 2, vol. 13, pp. 518–525,1998.
dc.relation.references[32] M. Tîrşu, L. Calinin, D. Zaiţev, and V. Berzan, “Phase-shift transformer with improved characteristic”, in Proc. 9th World Energy System Conference, June 28-30 2012 Suceava, Romania http://www.agir.ro/buletine/1417.pdf.
dc.relation.references[33] L. Kalinin, I. Golub, D. Zaiţev, and M. Tîrsu, “The technical characteristics of the two-core phase-shifting device”, Forumul regional al energiei pentru Europa Centrala si de Est – FOREN 201415-19 Iunie 2014, Romania.
dc.relation.references[34] L. Calinin, D. Zaiţev, M. Tîrşu, and I. Golub, “Regulator de fază trifazat cu transformator”, Institutul de Energetică al Academiei de Ştiinţe a Moldovei, MD; C/BIRegistru Patent MD, no 4397, 2016.
dc.relation.references[35] I.V. Golub, D.A. Zaitsev, and I.G.Zubareva, “Modified Two-core Phase-shifting Transformer Based on the Classical “Delta Connection” Scheme”, Institute of Power Engineering of the Academy of Sciences of Moldova Chisinau, Republic of Moldova, pp. 25–30, 30.01.2016.
dc.relation.references[36] L. Dobrusin, Tendencii primeneniya fazopovorotnyh transformatorov, [Trends in the use of phaseshift transformers] [Power Electronics] Silovaya ehlektronika, no. 4’2012, (In Russian). Available at: http://power-e.ru/pdf/ 2012_ 04_60.pdf, date of access 20.12.2017.
dc.relation.references[37] L. P. Kalinin, D.A.Zaitcev, M.S. Tirshu, and I. V. Golub, “Characteristics of the Phase-shifting Transformer Realized According to the “Polygon” Connection”, Problemele energeticii regionale, no. 3 (35), pp. 1–8, 2017. http://doi.org/10.5281/zenodo.1188531.
dc.relation.referencesen[1] "Ukrenergo networks. [online] Available at: https://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/
dc.relation.referencesen[2] Ua.energy. 2021. [online] Available at: https://ua.energy/ wp-content/uploads/2018/03/ PROEKT-Planu-rozvytku-systemy-peredachi-na2019-2028-roky.pdf
dc.relation.referencesen[3] Yearbook.enerdata.net. 2021. World Power consumption | Electricity consumption | Enerdata. [online] Available at: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
dc.relation.referencesen[4] AEMC. 2021. Transmission loss factors. [online] Available at: https://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors
dc.relation.referencesen[5] 2017. Rules of arrangement of electrical installations. Fort Publishing House Kharkiv: Official publication. Ministry of Energy and Coal of Ukraine, p. 760.
dc.relation.referencesen[6] IEA. 2021. Data tables – Data & Statistics - IEA. [online] Available at: https://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018
dc.relation.referencesen[7] A. Gerkusov, S. Bordanov, "Standardization of electricity losses in three-phase electrical networks of power supply systems", ONU Bulletin. Energy problems 2006, pp. 5–6, 2006.
dc.relation.referencesen[8] A. Gerkusov, "Optimization of losses of the electric power transferred on air lines with a voltage of 110 kV and above", Scientific and technical information of St. Petersburg State Pedagogical University, no. 1, p. 214, 2015.
dc.relation.referencesen[9] A. Glazunov, G. Shvedov, Design of the district electrical network. Methodical instructions for course design, MEI Publishing House, p. 72, 2010.
dc.relation.referencesen[10] Yu. Zhelezko, The choice of measures to reduce electricity losses in electrical networks: A guide for practical calculations, 1st ed. Energoatomizdat, p.176, 1989.
dc.relation.referencesen[11] STP 34.09.254 (RD 34.09.254) Instruction on reduction of technological costs of electric energy for transmission on electric networks of power systems and power associations
dc.relation.referencesen[12] P. Krasovsky, D. Tsyplenkov, "Methods and means of reducing technical losses of electricity in the elements of power supply systems", Electrical engineering and power engineering, no.1, 2015.
dc.relation.referencesen[13] V. Stepanov, V. Kosyrikhin, "Losses of active power in power supply systems and their reduction. Izvestiya TulGU", Technical sciences, no. 3, 2010.
dc.relation.referencesen[14] F. Shkrabets, P. Krasovsky, Operational dynamics of electricity losses in power supply systems: monograph, Ministry of Education and Science of Ukraine, National Mining University. D. NSU, 2015.
dc.relation.referencesen[15] I. Latypov, V. Sushkov, Reduction of active power losses in wind power transmission lines designed for 6–35 kV, Dynamics of systems, mechanisms and machines (Dynamics), 2016.
dc.relation.referencesen[16] V. Babenko, Provision of reactive power compensation as a warehouse for energy saving. Energy saving. Ener-Getika. Energy audit. no.9 (91), 2011.
dc.relation.referencesen[17] L. Bessonov, "Theoretical foundations of electrical engineering", Textbook for energy and electrical engineering universities and faculties, 4th ed. Moscow: Higher School Publishing House, 1964.
dc.relation.referencesen[18] T. Edwards, M. Steer, Fundamentals of Signal Transmission on Interconnects, Foundations for Microstrip Circuit Design, pp. 19–50, 2016.
dc.relation.referencesen[19] D. Maevsky, O. Besarab, E. Maevskaya, V. Berzan, and A. Savieliev, "Ways and Reserves of Increasing the Efficiency of Electric Power Transmission Lines", in Proc. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020.
dc.relation.referencesen[20] X. Zhang, F. Gao, X. Lv, H. Lv, Q. Tian, J. Ma, W.Yin, and J. Dong, "Line loss reduction with distributed energy storage systems", IEEE PES Innovative Smart Grid Technologies, 2012.
dc.relation.referencesen[21] V. Postolaty, E. Bykova, V. Suslov, L.Timashova, Y. Shakaryan, and S. Kareva, "Controlled Compact High Voltage Power Lines", Problemele energeticii regionale, no. 30, 2016.
dc.relation.referencesen[22] N. Rakushev, Ultra-long open-loop AC power transmission. MHEU, 1957.
dc.relation.referencesen[23] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, "Controlled compact ac transmission lines", International conference "Energy of Moldova, Regional aspects of development", 2012.
dc.relation.referencesen[24] V. Postolaty, E. Bykova, L. Timashova, and Y. Shakaryan, "Main principles of creation and characteristics of controlled self-compensing electric transmission lines", Electrotechnic and Computer Systems, no. 25(101), 2017.
dc.relation.referencesen[25] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, "Efficiency of the Compact Controlled High -Voltage Power Lines", Problemele energeticii regional, Electroenergetică, no.3 (29), 2015.
dc.relation.referencesen[26] A. Burman, Y. Rozanov, and Y. Shakaryan, Controlling Electricity Flows and Improving the Efficiency of Electric Power Systems: A Study Guide, 1st ed. Moscow: Publishing house MEI, p. 336, 2012.
dc.relation.referencesen[27] V. Kochkin, and Y. Shakaryan, Application of flexible (controlled) AC power transmission systems in power systems, 1st ed. Moscow: Torus-press, p. 312, 2011.
dc.relation.referencesen[28] J. Verboomen, D. Van Hertem, P. H. Schavemaker, W. L. Kling, and R. Belmans, Phase shifting transformers: Principles and applications, in Future Power Systems (FPS), Amsterdam, the Netherlands, p. 6, November 2005.
dc.relation.referencesen[29] J. Verboomen, Optimization of transmission systems by use of phase shifting transformers, Dissertation, Technische Universiteit Delft, 2008.
dc.relation.referencesen[30] N. Johansson, Control of dynamically assisted phase-shifting transformers. KTH, Stockholm, 2008.
dc.relation.referencesen[31] A. Krämer and J. Ruff, "Transformer for Phase Angle Regulation considering the Selection of On- Load Tap-Changers", IEEE Transactions on Power Delivery, , no. 2, vol. 13, pp. 518–525,1998.
dc.relation.referencesen[32] M. Tîrşu, L. Calinin, D. Zaiţev, and V. Berzan, "Phase-shift transformer with improved characteristic", in Proc. 9th World Energy System Conference, June 28-30 2012 Suceava, Romania http://www.agir.ro/buletine/1417.pdf.
dc.relation.referencesen[33] L. Kalinin, I. Golub, D. Zaiţev, and M. Tîrsu, "The technical characteristics of the two-core phase-shifting device", Forumul regional al energiei pentru Europa Centrala si de Est – FOREN 201415-19 Iunie 2014, Romania.
dc.relation.referencesen[34] L. Calinin, D. Zaiţev, M. Tîrşu, and I. Golub, "Regulator de fază trifazat cu transformator", Institutul de Energetică al Academiei de Ştiinţe a Moldovei, MD; C/BIRegistru Patent MD, no 4397, 2016.
dc.relation.referencesen[35] I.V. Golub, D.A. Zaitsev, and I.G.Zubareva, "Modified Two-core Phase-shifting Transformer Based on the Classical "Delta Connection" Scheme", Institute of Power Engineering of the Academy of Sciences of Moldova Chisinau, Republic of Moldova, pp. 25–30, 30.01.2016.
dc.relation.referencesen[36] L. Dobrusin, Tendencii primeneniya fazopovorotnyh transformatorov, [Trends in the use of phaseshift transformers] [Power Electronics] Silovaya ehlektronika, no. 4’2012, (In Russian). Available at: http://power-e.ru/pdf/ 2012_ 04_60.pdf, date of access 20.12.2017.
dc.relation.referencesen[37] L. P. Kalinin, D.A.Zaitcev, M.S. Tirshu, and I. V. Golub, "Characteristics of the Phase-shifting Transformer Realized According to the "Polygon" Connection", Problemele energeticii regionale, no. 3 (35), pp. 1–8, 2017. http://doi.org/10.5281/zenodo.1188531.
dc.relation.urihttps://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/
dc.relation.urihttps://ua.energy/
dc.relation.urihttps://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
dc.relation.urihttps://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors
dc.relation.urihttps://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018
dc.relation.urihttp://www.agir.ro/buletine/1417.pdf
dc.relation.urihttp://power-e.ru/pdf/
dc.relation.urihttp://doi.org/10.5281/zenodo.1188531
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.subjectlosses in power lines
dc.subjectprimary and secondary parameters of power lines
dc.subjectcharacteristic impedance
dc.subjectunmatched load mode
dc.subjectmatched load mode
dc.subjectcontrolled power lines
dc.titleWays and Methods of Improving the Effciency of Overhead Power Line
dc.title.alternativeШляхи та методи підвищення ефективності повітряних ліній передачі електричної енергії
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v11n2_Saveliev_A-Ways_and_Methods_of_Improving_18-25.pdf
Size:
464.79 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: