Ways and Methods of Improving the Effciency of Overhead Power Line
dc.citation.epage | 25 | |
dc.citation.issue | 2 | |
dc.citation.spage | 18 | |
dc.contributor.affiliation | Odessa Polytechnic State University | |
dc.contributor.author | Савєльєв, Артем | |
dc.contributor.author | Saveliev, Artem | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-04-26T08:15:43Z | |
dc.date.available | 2023-04-26T08:15:43Z | |
dc.date.created | 2021-10-10 | |
dc.date.issued | 2021-10-10 | |
dc.description.abstract | В роботі проаналізовано використовувані методи та шляхи підвищення ефективності передачі електроенергії в повітряних лініях електропередачі. Розглянуто роль та місце електричної енергії в загальній структурі енергоспоживання, способи її транспортування, види втрат, які виникають під час транспортування електричної енергії, та шляхи зменшення цих втрат. На підставі літературних джерел досліджено структуру втрат в лініях передачі. У проведеному огляді літератури вказується, що не розглядався такий вид втрат, як втрати за рахунок неузгодженості навантаження з лінією. Проаналізовано шляхи досягнення та можливості підтримання роботи лінії в режимі узгодженого навантаження. | |
dc.description.abstract | At this article, existing methods and ways to increase the efficiency of electricity transmission in overhead power lines were analyzed. The role and place of electric energy in the general structure of energy consumption, methods of its transportation, types of losses that occur during transportation of electric energy and ways to reduce these losses were considered. On the basis of literature sources the structure of losses in transmission lines was investigated. A literature review indicates that a certain type of losses has been overlooked, that is, losses occurring due to the mismatch of the load with the line. The ways of achieving and possibilities of maintaining the operation of lines in a matched load mode were analyzed. New method of reducing losses by creating a matched load mode in power lines is proposed. | |
dc.format.extent | 18-25 | |
dc.format.pages | 8 | |
dc.identifier.citation | Saveliev A. Ways and Methods of Improving the Effciency of Overhead Power Line / Artem Saveliev // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 11. — No 2. — P. 18–25. | |
dc.identifier.citationen | Saveliev A. (2021) Ways and Methods of Improving the Effciency of Overhead Power Line. Computational Problems of Electrical Engineering (Lviv), vol. 11, no 2, pp. 18-25. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58464 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Computational Problems of Electrical Engineering, 2 (11), 2021 | |
dc.relation.references | [1] “Ukrenergo networks. [online] Available at: https://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/ | |
dc.relation.references | [2] Ua.energy. 2021. [online] Available at: https://ua.energy/ wp-content/uploads/2018/03/ PROEKT-Planu-rozvytku-systemy-peredachi-na2019-2028-roky.pdf | |
dc.relation.references | [3] Yearbook.enerdata.net. 2021. World Power consumption | Electricity consumption | Enerdata. [online] Available at: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html | |
dc.relation.references | [4] AEMC. 2021. Transmission loss factors. [online] Available at: https://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors | |
dc.relation.references | [5] 2017. Rules of arrangement of electrical installations. Fort Publishing House Kharkiv: Official publication. Ministry of Energy and Coal of Ukraine, p. 760. | |
dc.relation.references | [6] IEA. 2021. Data tables – Data & Statistics - IEA. [online] Available at: https://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018 | |
dc.relation.references | [7] A. Gerkusov, S. Bordanov, “Standardization of electricity losses in three-phase electrical networks of power supply systems”, ONU Bulletin. Energy problems 2006, pp. 5–6, 2006. | |
dc.relation.references | [8] A. Gerkusov, “Optimization of losses of the electric power transferred on air lines with a voltage of 110 kV and above”, Scientific and technical information of St. Petersburg State Pedagogical University, no. 1, p. 214, 2015. | |
dc.relation.references | [9] A. Glazunov, G. Shvedov, Design of the district electrical network. Methodical instructions for course design, MEI Publishing House, p. 72, 2010. | |
dc.relation.references | [10] Yu. Zhelezko, The choice of measures to reduce electricity losses in electrical networks: A guide for practical calculations, 1st ed. Energoatomizdat, p.176, 1989. | |
dc.relation.references | [11] СТП 34.09.254 (РД 34.09.254) Instruction on reduction of technological costs of electric energy for transmission on electric networks of power systems and power associations | |
dc.relation.references | [12] P. Krasovsky, D. Tsyplenkov, “Methods and means of reducing technical losses of electricity in the elements of power supply systems”, Electrical engineering and power engineering, no.1, 2015. | |
dc.relation.references | [13] V. Stepanov, V. Kosyrikhin, “Losses of active power in power supply systems and their reduction. Izvestiya TulGU”, Technical sciences, no. 3, 2010. | |
dc.relation.references | [14] F. Shkrabets, P. Krasovsky, Operational dynamics of electricity losses in power supply systems: monograph, Ministry of Education and Science of Ukraine, National Mining University. D. NSU, 2015. | |
dc.relation.references | [15] I. Latypov, V. Sushkov, Reduction of active power losses in wind power transmission lines designed for 6–35 kV, Dynamics of systems, mechanisms and machines (Dynamics), 2016. | |
dc.relation.references | [16] V. Babenko, Provision of reactive power compensation as a warehouse for energy saving. Energy saving. Ener-Getika. Energy audit. no.9 (91), 2011. | |
dc.relation.references | [17] L. Bessonov, “Theoretical foundations of electrical engineering”, Textbook for energy and electrical engineering universities and faculties, 4th ed. Moscow: Higher School Publishing House, 1964. | |
dc.relation.references | [18] T. Edwards, M. Steer, Fundamentals of Signal Transmission on Interconnects, Foundations for Microstrip Circuit Design, pp. 19–50, 2016. | |
dc.relation.references | [19] D. Maevsky, O. Besarab, E. Maevskaya, V. Berzan, and A. Savieliev, “Ways and Reserves of Increasing the Efficiency of Electric Power Transmission Lines”, in Proc. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020. | |
dc.relation.references | [20] X. Zhang, F. Gao, X. Lv, H. Lv, Q. Tian, J. Ma, W.Yin, and J. Dong, “Line loss reduction with distributed energy storage systems”, IEEE PES Innovative Smart Grid Technologies, 2012. | |
dc.relation.references | [21] V. Postolaty, E. Bykova, V. Suslov, L.Timashova, Y. Shakaryan, and S. Kareva, “Controlled Compact High Voltage Power Lines”, Problemele energeticii regionale, no. 30, 2016. | |
dc.relation.references | [22] N. Rakushev, Ultra-long open-loop AC power transmission. MHEU, 1957. | |
dc.relation.references | [23] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, “Controlled compact ac transmission lines”, International conference “Energy of Moldova, Regional aspects of development”, 2012. | |
dc.relation.references | [24] V. Postolaty, E. Bykova, L. Timashova, and Y. Shakaryan, “Main principles of creation and characteristics of controlled self-compensing electric transmission lines”, Electrotechnic and Computer Systems, no. 25(101), 2017. | |
dc.relation.references | [25] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, “Efficiency of the Compact Controlled High -Voltage Power Lines”, Problemele energeticii regional, Electroenergetică, no.3 (29), 2015. | |
dc.relation.references | [26] A. Burman, Y. Rozanov, and Y. Shakaryan, Controlling Electricity Flows and Improving the Efficiency of Electric Power Systems: A Study Guide, 1st ed. Moscow: Publishing house MEI, p. 336, 2012. | |
dc.relation.references | [27] V. Kochkin, and Y. Shakaryan, Application of flexible (controlled) AC power transmission systems in power systems, 1st ed. Moscow: Torus-press, p. 312, 2011. | |
dc.relation.references | [28] J. Verboomen, D. Van Hertem, P. H. Schavemaker, W. L. Kling, and R. Belmans, Phase shifting transformers: Principles and applications, in Future Power Systems (FPS), Amsterdam, the Netherlands, p. 6, November 2005. | |
dc.relation.references | [29] J. Verboomen, Optimization of transmission systems by use of phase shifting transformers, Dissertation, Technische Universiteit Delft, 2008. | |
dc.relation.references | [30] N. Johansson, Control of dynamically assisted phase-shifting transformers. KTH, Stockholm, 2008. | |
dc.relation.references | [31] A. Krämer and J. Ruff, “Transformer for Phase Angle Regulation considering the Selection of On- Load Tap-Changers”, IEEE Transactions on Power Delivery, , no. 2, vol. 13, pp. 518–525,1998. | |
dc.relation.references | [32] M. Tîrşu, L. Calinin, D. Zaiţev, and V. Berzan, “Phase-shift transformer with improved characteristic”, in Proc. 9th World Energy System Conference, June 28-30 2012 Suceava, Romania http://www.agir.ro/buletine/1417.pdf. | |
dc.relation.references | [33] L. Kalinin, I. Golub, D. Zaiţev, and M. Tîrsu, “The technical characteristics of the two-core phase-shifting device”, Forumul regional al energiei pentru Europa Centrala si de Est – FOREN 201415-19 Iunie 2014, Romania. | |
dc.relation.references | [34] L. Calinin, D. Zaiţev, M. Tîrşu, and I. Golub, “Regulator de fază trifazat cu transformator”, Institutul de Energetică al Academiei de Ştiinţe a Moldovei, MD; C/BIRegistru Patent MD, no 4397, 2016. | |
dc.relation.references | [35] I.V. Golub, D.A. Zaitsev, and I.G.Zubareva, “Modified Two-core Phase-shifting Transformer Based on the Classical “Delta Connection” Scheme”, Institute of Power Engineering of the Academy of Sciences of Moldova Chisinau, Republic of Moldova, pp. 25–30, 30.01.2016. | |
dc.relation.references | [36] L. Dobrusin, Tendencii primeneniya fazopovorotnyh transformatorov, [Trends in the use of phaseshift transformers] [Power Electronics] Silovaya ehlektronika, no. 4’2012, (In Russian). Available at: http://power-e.ru/pdf/ 2012_ 04_60.pdf, date of access 20.12.2017. | |
dc.relation.references | [37] L. P. Kalinin, D.A.Zaitcev, M.S. Tirshu, and I. V. Golub, “Characteristics of the Phase-shifting Transformer Realized According to the “Polygon” Connection”, Problemele energeticii regionale, no. 3 (35), pp. 1–8, 2017. http://doi.org/10.5281/zenodo.1188531. | |
dc.relation.referencesen | [1] "Ukrenergo networks. [online] Available at: https://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/ | |
dc.relation.referencesen | [2] Ua.energy. 2021. [online] Available at: https://ua.energy/ wp-content/uploads/2018/03/ PROEKT-Planu-rozvytku-systemy-peredachi-na2019-2028-roky.pdf | |
dc.relation.referencesen | [3] Yearbook.enerdata.net. 2021. World Power consumption | Electricity consumption | Enerdata. [online] Available at: https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html | |
dc.relation.referencesen | [4] AEMC. 2021. Transmission loss factors. [online] Available at: https://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors | |
dc.relation.referencesen | [5] 2017. Rules of arrangement of electrical installations. Fort Publishing House Kharkiv: Official publication. Ministry of Energy and Coal of Ukraine, p. 760. | |
dc.relation.referencesen | [6] IEA. 2021. Data tables – Data & Statistics - IEA. [online] Available at: https://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018 | |
dc.relation.referencesen | [7] A. Gerkusov, S. Bordanov, "Standardization of electricity losses in three-phase electrical networks of power supply systems", ONU Bulletin. Energy problems 2006, pp. 5–6, 2006. | |
dc.relation.referencesen | [8] A. Gerkusov, "Optimization of losses of the electric power transferred on air lines with a voltage of 110 kV and above", Scientific and technical information of St. Petersburg State Pedagogical University, no. 1, p. 214, 2015. | |
dc.relation.referencesen | [9] A. Glazunov, G. Shvedov, Design of the district electrical network. Methodical instructions for course design, MEI Publishing House, p. 72, 2010. | |
dc.relation.referencesen | [10] Yu. Zhelezko, The choice of measures to reduce electricity losses in electrical networks: A guide for practical calculations, 1st ed. Energoatomizdat, p.176, 1989. | |
dc.relation.referencesen | [11] STP 34.09.254 (RD 34.09.254) Instruction on reduction of technological costs of electric energy for transmission on electric networks of power systems and power associations | |
dc.relation.referencesen | [12] P. Krasovsky, D. Tsyplenkov, "Methods and means of reducing technical losses of electricity in the elements of power supply systems", Electrical engineering and power engineering, no.1, 2015. | |
dc.relation.referencesen | [13] V. Stepanov, V. Kosyrikhin, "Losses of active power in power supply systems and their reduction. Izvestiya TulGU", Technical sciences, no. 3, 2010. | |
dc.relation.referencesen | [14] F. Shkrabets, P. Krasovsky, Operational dynamics of electricity losses in power supply systems: monograph, Ministry of Education and Science of Ukraine, National Mining University. D. NSU, 2015. | |
dc.relation.referencesen | [15] I. Latypov, V. Sushkov, Reduction of active power losses in wind power transmission lines designed for 6–35 kV, Dynamics of systems, mechanisms and machines (Dynamics), 2016. | |
dc.relation.referencesen | [16] V. Babenko, Provision of reactive power compensation as a warehouse for energy saving. Energy saving. Ener-Getika. Energy audit. no.9 (91), 2011. | |
dc.relation.referencesen | [17] L. Bessonov, "Theoretical foundations of electrical engineering", Textbook for energy and electrical engineering universities and faculties, 4th ed. Moscow: Higher School Publishing House, 1964. | |
dc.relation.referencesen | [18] T. Edwards, M. Steer, Fundamentals of Signal Transmission on Interconnects, Foundations for Microstrip Circuit Design, pp. 19–50, 2016. | |
dc.relation.referencesen | [19] D. Maevsky, O. Besarab, E. Maevskaya, V. Berzan, and A. Savieliev, "Ways and Reserves of Increasing the Efficiency of Electric Power Transmission Lines", in Proc. 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), 2020. | |
dc.relation.referencesen | [20] X. Zhang, F. Gao, X. Lv, H. Lv, Q. Tian, J. Ma, W.Yin, and J. Dong, "Line loss reduction with distributed energy storage systems", IEEE PES Innovative Smart Grid Technologies, 2012. | |
dc.relation.referencesen | [21] V. Postolaty, E. Bykova, V. Suslov, L.Timashova, Y. Shakaryan, and S. Kareva, "Controlled Compact High Voltage Power Lines", Problemele energeticii regionale, no. 30, 2016. | |
dc.relation.referencesen | [22] N. Rakushev, Ultra-long open-loop AC power transmission. MHEU, 1957. | |
dc.relation.referencesen | [23] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, "Controlled compact ac transmission lines", International conference "Energy of Moldova, Regional aspects of development", 2012. | |
dc.relation.referencesen | [24] V. Postolaty, E. Bykova, L. Timashova, and Y. Shakaryan, "Main principles of creation and characteristics of controlled self-compensing electric transmission lines", Electrotechnic and Computer Systems, no. 25(101), 2017. | |
dc.relation.referencesen | [25] V. Postolaty, E. Bykova, V. Suslov, L. Timashova, Y. Shakaryan, and S. Kareva, "Efficiency of the Compact Controlled High -Voltage Power Lines", Problemele energeticii regional, Electroenergetică, no.3 (29), 2015. | |
dc.relation.referencesen | [26] A. Burman, Y. Rozanov, and Y. Shakaryan, Controlling Electricity Flows and Improving the Efficiency of Electric Power Systems: A Study Guide, 1st ed. Moscow: Publishing house MEI, p. 336, 2012. | |
dc.relation.referencesen | [27] V. Kochkin, and Y. Shakaryan, Application of flexible (controlled) AC power transmission systems in power systems, 1st ed. Moscow: Torus-press, p. 312, 2011. | |
dc.relation.referencesen | [28] J. Verboomen, D. Van Hertem, P. H. Schavemaker, W. L. Kling, and R. Belmans, Phase shifting transformers: Principles and applications, in Future Power Systems (FPS), Amsterdam, the Netherlands, p. 6, November 2005. | |
dc.relation.referencesen | [29] J. Verboomen, Optimization of transmission systems by use of phase shifting transformers, Dissertation, Technische Universiteit Delft, 2008. | |
dc.relation.referencesen | [30] N. Johansson, Control of dynamically assisted phase-shifting transformers. KTH, Stockholm, 2008. | |
dc.relation.referencesen | [31] A. Krämer and J. Ruff, "Transformer for Phase Angle Regulation considering the Selection of On- Load Tap-Changers", IEEE Transactions on Power Delivery, , no. 2, vol. 13, pp. 518–525,1998. | |
dc.relation.referencesen | [32] M. Tîrşu, L. Calinin, D. Zaiţev, and V. Berzan, "Phase-shift transformer with improved characteristic", in Proc. 9th World Energy System Conference, June 28-30 2012 Suceava, Romania http://www.agir.ro/buletine/1417.pdf. | |
dc.relation.referencesen | [33] L. Kalinin, I. Golub, D. Zaiţev, and M. Tîrsu, "The technical characteristics of the two-core phase-shifting device", Forumul regional al energiei pentru Europa Centrala si de Est – FOREN 201415-19 Iunie 2014, Romania. | |
dc.relation.referencesen | [34] L. Calinin, D. Zaiţev, M. Tîrşu, and I. Golub, "Regulator de fază trifazat cu transformator", Institutul de Energetică al Academiei de Ştiinţe a Moldovei, MD; C/BIRegistru Patent MD, no 4397, 2016. | |
dc.relation.referencesen | [35] I.V. Golub, D.A. Zaitsev, and I.G.Zubareva, "Modified Two-core Phase-shifting Transformer Based on the Classical "Delta Connection" Scheme", Institute of Power Engineering of the Academy of Sciences of Moldova Chisinau, Republic of Moldova, pp. 25–30, 30.01.2016. | |
dc.relation.referencesen | [36] L. Dobrusin, Tendencii primeneniya fazopovorotnyh transformatorov, [Trends in the use of phaseshift transformers] [Power Electronics] Silovaya ehlektronika, no. 4’2012, (In Russian). Available at: http://power-e.ru/pdf/ 2012_ 04_60.pdf, date of access 20.12.2017. | |
dc.relation.referencesen | [37] L. P. Kalinin, D.A.Zaitcev, M.S. Tirshu, and I. V. Golub, "Characteristics of the Phase-shifting Transformer Realized According to the "Polygon" Connection", Problemele energeticii regionale, no. 3 (35), pp. 1–8, 2017. http://doi.org/10.5281/zenodo.1188531. | |
dc.relation.uri | https://ua.energy/peredacha-idyspetcheryzatsiya/merezhi-ukrenergo/ | |
dc.relation.uri | https://ua.energy/ | |
dc.relation.uri | https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html | |
dc.relation.uri | https://www.aemc.gov.au/energysystem/electricity/electricity-system/transmissionloss-factors | |
dc.relation.uri | https://www.iea.org/dataand-statistics/datatables?country=WORLD&energy=Electricity&year=2018 | |
dc.relation.uri | http://www.agir.ro/buletine/1417.pdf | |
dc.relation.uri | http://power-e.ru/pdf/ | |
dc.relation.uri | http://doi.org/10.5281/zenodo.1188531 | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2021 | |
dc.subject | losses in power lines | |
dc.subject | primary and secondary parameters of power lines | |
dc.subject | characteristic impedance | |
dc.subject | unmatched load mode | |
dc.subject | matched load mode | |
dc.subject | controlled power lines | |
dc.title | Ways and Methods of Improving the Effciency of Overhead Power Line | |
dc.title.alternative | Шляхи та методи підвищення ефективності повітряних ліній передачі електричної енергії | |
dc.type | Article |