Магнітоопір та намагніченість кремнієвих мікроструктур за низьких температур

dc.citation.epage85
dc.citation.issue909
dc.citation.journalTitleВісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації
dc.citation.spage79
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДружинін, А. О.
dc.contributor.authorОстровський, І. П.
dc.contributor.authorХоверко, Ю. М.
dc.contributor.authorКучерепа, Н. І.
dc.contributor.authorDruzhinin, A.
dc.contributor.authorOstrovskii, I.
dc.contributor.authorKhoverko, Yu.
dc.contributor.authorKucherepa, N.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-03-06T08:41:46Z
dc.date.available2020-03-06T08:41:46Z
dc.date.created2018-02-18
dc.date.issued2018-02-18
dc.description.abstractДосліджено особливості перенесення носіїв заряду мікрокристалів кремнію, легованих бором до концентрацій, які відповідають переходу метал-діелектрик, та нікелем, що міститься у приповерхневій області кристала. Досліджено магнітні властивості до 4 кОе та магнітоопір ниткоподібних мікрокристалів кремнію під дією магнітних полів до 14 Тл за температур 4,2 К. Детально проаналізовано результати теоретичних досліджень магнітних та магнітотранспортних властивостей Si<B, Ni>. Встановлено квадратичний характер залежності коефіцієнта від’ємного магнітоопору від намагніченості в ниткоподібних мікрокристалах кремнію.
dc.description.abstractInvestigation of diluted semiconductors in the field of magnetoelectronics opens a possibility to design high sensitive sensors of a magnetic field. On the other hand, study of device performances in hard conditions, namely at cryogenic temperatures, including the temperatures of liquid helium, is an important problem. In this work, considerable attention is paid to establishing the relationship between magnetic and magneto-trasport properties of silicon microcrystals doped with nickel and boron to concentrations in the vicinity of the metal-dielectric phase transition, which is important in the development of magnetic field sensors, spin valves, etc. The peculiarities of charge carrier’s transfer in silicon microcrystals doped with nickel impurities, located in the near-surface area of the crystal, are investigated. The magnetization of up to 0.4 Т and the magnetoresistance of silicon microcrystals under the action of magnetic fields up to 14 T in the low temperature range down to 4.2 K were studied. A detailed analysis of the results of theoretical studies of magnetic and magnetic transport properties of Si <B, Ni> whiskers was carried out. The quadratic nature of the dependence of the negative magnetoresistance on the magnetization in silicon microcrystals is established for the magnetization exceeding 5∙105 A/m. However, for small values of magnetization up to 5∙105 A / m, the quadratic dependence of the magnetoresistance on the magnetization is violated, which is connected with the hopping mechanism of carrier transport over one occupied impurity levels. The coefficient of proportionality between the magnetoresistance and the magnetization of the crystals increases if the impurity concentration increases, approaching the metal-dielectric transition, and at temperature decrease. The maximum value of the negative magnetoresistance coefficient for the investigated Si <B, Ni> samples is about 10%, corresponding to the magnetization of the sample, equal to 6.53∙105 A/m. It was established that the reason of the low-temperature transfer of charge carriers for silicon microcrystals doped by a boron and nickel impurities to the concentration corresponding to the metal-dielectric transition is the polarization hopping conductivity in the field of magnetic impurity. The large magnitudes of the negative magnetoresistance correspond to the hopping conductivity of charge carriers by twice occupied admixture states. It was established that the introduction of a magnetic impurity could affect the electromagnetic properties of the crystal associated with the transport of charge carriers by hopping tunneling in the near-surface zone. The results of low-temperature properties of silicon microcrystals doped with boron and nickel can form the basis of the development of sensitive sensors of a magnetic field with a magnetoresistive principle of operation, including multifunctional sensors.
dc.format.extent79-85
dc.format.pages7
dc.identifier.citationМагнітоопір та намагніченість кремнієвих мікроструктур за низьких температур / А. О. Дружинін, І. П. Островський, Ю. М. Ховерко, Н. І. Кучерепа // Вісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації. — Львів : Видавництво Львівської політехніки, 2018. — № 909. — С. 79–85.
dc.identifier.citationenMagnetoresistance and magnetization of silicon microstructures at low temperatures / A. Druzhinin, I. Ostrovskii, Yu. Khoverko, N. Kucherepa // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Radioelektronika ta telekomunikatsii. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 909. — P. 79–85.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46905
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofВісник Національного університету “Львівська політехніка”. Серія: Радіоелектроніка та телекомунікації, 909, 2018
dc.relation.references1. Fert A., The present and the future of spintronics, Thin Solid Films 517(2008).
dc.relation.references2. Zutic I., Fabian J., and Das Sarma S. Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2004).
dc.relation.references3. Wu M. W., J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors, Physics Reports 493(2010).
dc.relation.references4. Kamra A., B. Ghosh and T. K. Ghosh, Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors, J. Appl. Phys. 108(2010).
dc.relation.references5. Sanchez D., C. Gould, G. Schmidt and L. W. Molenkamp, Spin-tunneling devices, IEEE Trans. Electron Devices 54(2007).
dc.relation.references6. Wu H. W., C. J. Tsai, and L. J. Chen. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Let. 90 (2007).
dc.relation.references7. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Kogut Iu. R., Nichkalo S. I., Warchulska J. K. Magnetic susceptibility of doped Si nanowhiskers // Journal of Nanoscience and Nanotechnology. – 2012. – Vol. 12. – P.8690–8693.
dc.relation.references8. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, K. Rogacki, P. G. Litovchenko, N. T. Pavlovska, Yu. V. Pavlovskyy, Yu. O. Ugrin Magnetic susceptibility and magnetoresistance of neutron-irradiated doped SI whiskers // Journal of Magnetism and Magnetic Materials. – 2015. – Vol. 393. – P. 310–315.
dc.relation.references9. Durgun E., D. Cakir, N. Akman, and S. Ciraci. Halfmetallic silicon nanowires: First- Principles Calculations. Phys. Rev. Lett. 99 (2007).
dc.relation.references10. Druzhinin Anatoly, Igor Ostrovskii, Yuriy Khoverko, Sergij Yatsukhnenko Magnetic properties of doped Si<B, Ni> whiskers for spintronics // Journal of Nano Research.– 2016.– Vol. 39.– P. 43–54.
dc.relation.references11. Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long, Firstprinciples study of electronic and optical properties of Ni-doped silicon nanowires. Acta Phys. Sin., Vol. 592010.
dc.relation.references12. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Chernetskiy M. Nanoscale conductive channels in silicon whiskers with nickel impurity // Nanoscale Research Letters. – 2017. – Vol. 12:78.
dc.relation.references13. Ohno H., H. Munekata, T. Penney, S. von Moln'ar, and L. L. Chang, Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductors, Phys. Rev. Lett. 68(1992).
dc.relation.references14. Ferrand D., J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyski, S. Kole'snik, T. Dietl, et al., Manipulation with spin ordering in ferromagnetic semiconductors Phys. Rev. B 63(2001).
dc.relation.references15. Patibandla S., S. Pramanik, S. Bandyopadhyay and G. C. Tepper, Spin relaxation in a germanium nanowire, J. Appl. Phys. 100(2006).
dc.relation.references16. Tahan C., R. Joynt. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells, Phys. Rev. B 71 (2005).
dc.relation.references17. Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong & Ron Jansen, Electrical creation of spin polarization in silicon at room temperature, Nature 462 (2009).
dc.relation.references18. Druzhinin А., I. Ostrovskii, Y. Khoverko, R. Koretskii. Strain-induced effects in p-type Si whiskers at low temperatures/ Materials Science in Semicon. Proc, Vol. 40, 2015, p. 766–771.
dc.relation.references19. Druzhinin А., I. Ostrovskii, Yu. Khoverko, S. Nichkalo, R. Koretskyy, Iu. Kogut, “Variable-range hopping conductance in Si whiskers / Phys. Status Solidi A Vol. 211, No. 2, 2014, pp.504–508.
dc.relation.references20. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, N. S. Liakh-Kaguj and Iu. R. Kogut,”Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures”, Materials Science in Semiconductor Processing, Vol. 14, No. 1, 2011, pp.18–22.
dc.relation.references21. Toyozawa Y.: J. Phys. Soc. Japan 17 (1962) 986.
dc.relation.references22. Sasaki W. Negative Magnetoresistance in the Impurity Conduction of n-type Germanium// Journal of Physical Societty of Japan. – 1965. – Vol. 30. – P. 825–833.
dc.relation.references23. Matsubara T. and Y. Toyozawa: Prog. Theoret. Phys. 26 (1961) 739.
dc.relation.references24. Дружинін А. О., Ховерко Ю. М., Кутраков О. П., Корецький Р. М., Яцухненко С. Ю. Чутливий елемент двофункційного сенсора магнітного поля та деформації на основі мікрокристалів Si<B, Ni> // Технология и конструирование в электронной аппаратуре. – 2017. – №3. – С. 24–29.
dc.relation.references25. Yatsukhnenko S., A. Druzhinin, I. Ostrovskii, Yu. Khoverko, R. Koreckii. Impedance of boron and nickel doped silicon whiskers / https://doi.org//10.1080/15421406.2018.1460233 (2018).
dc.relation.referencesen1. Fert A., The present and the future of spintronics, Thin Solid Films 517(2008).
dc.relation.referencesen2. Zutic I., Fabian J., and Das Sarma S. Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2004).
dc.relation.referencesen3. Wu M. W., J. H. Jiang, and M. Q. Weng, Spin dynamics in semiconductors, Physics Reports 493(2010).
dc.relation.referencesen4. Kamra A., B. Ghosh and T. K. Ghosh, Spin relaxation due to electron-electron magnetic interaction in high Lande g-factor semiconductors, J. Appl. Phys. 108(2010).
dc.relation.referencesen5. Sanchez D., C. Gould, G. Schmidt and L. W. Molenkamp, Spin-tunneling devices, IEEE Trans. Electron Devices 54(2007).
dc.relation.referencesen6. Wu H. W., C. J. Tsai, and L. J. Chen. Room temperature ferromagnetism in Mn+-implanted Si nanowires. Appl. Phys. Let. 90 (2007).
dc.relation.referencesen7. Druzhinin A. A., Ostrovskii I. P., Khoverko Yu. M., Kogut Iu. R., Nichkalo S. I., Warchulska J. K. Magnetic susceptibility of doped Si nanowhiskers, Journal of Nanoscience and Nanotechnology, 2012, Vol. 12, P.8690–8693.
dc.relation.referencesen8. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, K. Rogacki, P. G. Litovchenko, N. T. Pavlovska, Yu. V. Pavlovskyy, Yu. O. Ugrin Magnetic susceptibility and magnetoresistance of neutron-irradiated doped SI whiskers, Journal of Magnetism and Magnetic Materials, 2015, Vol. 393, P. 310–315.
dc.relation.referencesen9. Durgun E., D. Cakir, N. Akman, and S. Ciraci. Halfmetallic silicon nanowires: First- Principles Calculations. Phys. Rev. Lett. 99 (2007).
dc.relation.referencesen10. Druzhinin Anatoly, Igor Ostrovskii, Yuriy Khoverko, Sergij Yatsukhnenko Magnetic properties of doped Si<B, Ni> whiskers for spintronics, Journal of Nano Research, 2016, Vol. 39, P. 43–54.
dc.relation.referencesen11. Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long, Firstprinciples study of electronic and optical properties of Ni-doped silicon nanowires. Acta Phys. Sin., Vol. 592010.
dc.relation.referencesen12. Yatsukhnenko S., Druzhinin A., Ostrovskii I., Khoverko Yu., Chernetskiy M. Nanoscale conductive channels in silicon whiskers with nickel impurity, Nanoscale Research Letters, 2017, Vol. 12:78.
dc.relation.referencesen13. Ohno H., H. Munekata, T. Penney, S. von Moln'ar, and L. L. Chang, Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductors, Phys. Rev. Lett. 68(1992).
dc.relation.referencesen14. Ferrand D., J. Cibert, A. Wasiela, C. Bourgognon, S. Tatarenko, G. Fishman, T. Andrearczyk, J. Jaroszyski, S. Kole'snik, T. Dietl, et al., Manipulation with spin ordering in ferromagnetic semiconductors Phys. Rev. B 63(2001).
dc.relation.referencesen15. Patibandla S., S. Pramanik, S. Bandyopadhyay and G. C. Tepper, Spin relaxation in a germanium nanowire, J. Appl. Phys. 100(2006).
dc.relation.referencesen16. Tahan C., R. Joynt. Rashba spin-orbit coupling and spin relaxation in silicon quantum wells, Phys. Rev. B 71 (2005).
dc.relation.referencesen17. Saroj P. Dash, Sandeep Sharma, Ram S. Patel, Michel P. de Jong & Ron Jansen, Electrical creation of spin polarization in silicon at room temperature, Nature 462 (2009).
dc.relation.referencesen18. Druzhinin A., I. Ostrovskii, Y. Khoverko, R. Koretskii. Strain-induced effects in p-type Si whiskers at low temperatures/ Materials Science in Semicon. Proc, Vol. 40, 2015, p. 766–771.
dc.relation.referencesen19. Druzhinin A., I. Ostrovskii, Yu. Khoverko, S. Nichkalo, R. Koretskyy, Iu. Kogut, "Variable-range hopping conductance in Si whiskers, Phys. Status Solidi A Vol. 211, No. 2, 2014, pp.504–508.
dc.relation.referencesen20. Druzhinin A. A., I. P. Ostrovskii, Yu. M. Khoverko, N. S. Liakh-Kaguj and Iu. R. Kogut,"Strain effect on magnetoresistance of SiGe solid solution whiskers at low temperatures", Materials Science in Semiconductor Processing, Vol. 14, No. 1, 2011, pp.18–22.
dc.relation.referencesen21. Toyozawa Y., J. Phys. Soc. Japan 17 (1962) 986.
dc.relation.referencesen22. Sasaki W. Negative Magnetoresistance in the Impurity Conduction of n-type Germanium// Journal of Physical Societty of Japan, 1965, Vol. 30, P. 825–833.
dc.relation.referencesen23. Matsubara T. and Y. Toyozawa: Prog. Theoret. Phys. 26 (1961) 739.
dc.relation.referencesen24. Druzhynin A. O., Khoverko Yu. M., Kutrakov O. P., Koretskyi R. M., Yatsukhnenko S. Yu. Chutlyvyi element dvofunktsiinoho sensora mahnitnoho polia ta deformatsii na osnovi mikrokrystaliv Si<B, Ni>, Tekhnolohyia y konstruyrovanye v elektronnoi apparature, 2017, No 3, P. 24–29.
dc.relation.referencesen25. Yatsukhnenko S., A. Druzhinin, I. Ostrovskii, Yu. Khoverko, R. Koreckii. Impedance of boron and nickel doped silicon whiskers, https://doi.org//10.1080/15421406.2018.1460233 (2018).
dc.relation.urihttps://doi.org//10.1080/15421406.2018.1460233
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.rights.holder© Дружинін А. О., Островський І. П., Ховерко Ю. М., Кучерепа Н. І., 2018
dc.subjectмікрокристали кремнію
dc.subjectмагнітотранспортні властивості
dc.subjectsilicon microcrystals
dc.subjectmagnetic transport properties
dc.subject.udc621.315.592
dc.titleМагнітоопір та намагніченість кремнієвих мікроструктур за низьких температур
dc.title.alternativeMagnetoresistance and magnetization of silicon microstructures at low temperatures
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018n909_Druzhinin_A-Magnetoresistance_and_magnetization_79-85.pdf
Size:
650.19 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018n909_Druzhinin_A-Magnetoresistance_and_magnetization_79-85__COVER.png
Size:
427.52 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.08 KB
Format:
Plain Text
Description: