Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules

dc.citation.epage1108
dc.citation.issue4
dc.citation.journalTitleМатематичне моделювання та комп'ютинг
dc.citation.spage1100
dc.contributor.affiliationПерший університет Мухаммеда
dc.contributor.affiliationMohammed First University
dc.contributor.authorБелкаді, С.
dc.contributor.authorАтунті, М.
dc.contributor.authorBelkadi, S.
dc.contributor.authorAtounti, M.
dc.coverage.placenameЛьвів
dc.date.accessioned2025-03-10T09:21:51Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПредставлено центральний метод скінченного об’єму та його застосування до нового класу моделей нелокального трафіку з прогнозованою взаємодією типу Арреніуса. Ці моделі можна сформулювати як скалярні закони збереження з нелокальними потоками. Запропонована схема є розвитком неосциляційної центральної схеми Несся–Тадмора. Проведено декілька чисельних експериментів, у яких виконано такі дії: продемонстровано надійність і високу роздільну здатність запропонованого методу; порівняно розв’язки рівнянь з локальними та нелокальними потоками; перевірено, як відстань уперед впливає на чисельний розв’язок.
dc.description.abstractWe present a central finite volume method and apply it to a new class of nonlocal traffic flow models with an Arrhenius-type look-ahead interaction. These models can be stated as scalar conservation laws with nonlocal fluxes. The suggested scheme is a development of the Nessyah–Tadmor non-oscillatory central scheme. We conduct several numerical experiments in which we carry out the following actions: we show the robustness and high resolution of the suggested method; we compare the equations’ solutions with local and nonlocal fluxes; we examine how the look-ahead distance affects the numerical solution.
dc.format.extent1100-1108
dc.format.pages9
dc.identifier.citationBelkadi S. Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules / S. Belkadi, M. Atounti // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1100–1108.
dc.identifier.citationenBelkadi S. Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules / S. Belkadi, M. Atounti // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1100–1108.
dc.identifier.doidoi.org/10.23939/mmc2023.04.1100
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64062
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofМатематичне моделювання та комп'ютинг, 4 (10), 2023
dc.relation.ispartofMathematical Modeling and Computing, 4 (10), 2023
dc.relation.references[1] Lighthill M., Whitham G. B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A. 229 (1178), 317–345 (1995).
dc.relation.references[2] Kuhne R. D., Gartner N. H. 75 Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium. Transportation Research Board E-Circular (2011).
dc.relation.references[3] Sopasakis A., Katsoulakis M. A. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM Journal on Applied Mathematics. 66 (3), 921–944 (2006).
dc.relation.references[4] Kurganov A., Polizzi A. Non-oscillatory central schemes for a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media. 4 (3), 431–451 (2009).
dc.relation.references[5] Lee Y. Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux. Journal of Differential Equations. 266 (1), 580–599 (2019).
dc.relation.references[6] Eymard R., Gallou¨et T., Herbin R. Finite Volume Method. Handbook of Numerical Analysis. Lions, Janvier (2013).
dc.relation.references[7] Godlewski E., Raviart P. A. Hyperbolic Systems of Conservation Laws. Ellipses (1991).
dc.relation.references[8] Helbing D., Treiber M. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Physical Review Letters. 81 (14), 3042–3045 (1998).
dc.relation.references[9] Chiarello F. A., Goatin P. Global entropy weak solutions for general non-local traffic flow models with the anisotropic kernel. ESAIM: M2AN. 52 (1), 163–180 (2018).
dc.relation.references[10] Belkadi S., Atounti M. Non-oscillatory central schemes for general non-local traffic flow models. International Journal of Applied Mathematics. 35 (4), 515–528 (2022).
dc.relation.references[11] Nessyahu N., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics. 87 (2), 408–463 (1990).
dc.relation.references[12] Sweby P. K. High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis. 21 (5), 995–1011 (1984).
dc.relation.references[13] Blandin S., Goatin P. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numerische Mathematik. 132 (2), 217–241 (2017).
dc.relation.references[14] Goatin P., Scialanga S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media. 11 (1), 107–121 (2016).
dc.relation.referencesen[1] Lighthill M., Whitham G. B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A. 229 (1178), 317–345 (1995).
dc.relation.referencesen[2] Kuhne R. D., Gartner N. H. 75 Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium. Transportation Research Board E-Circular (2011).
dc.relation.referencesen[3] Sopasakis A., Katsoulakis M. A. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM Journal on Applied Mathematics. 66 (3), 921–944 (2006).
dc.relation.referencesen[4] Kurganov A., Polizzi A. Non-oscillatory central schemes for a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media. 4 (3), 431–451 (2009).
dc.relation.referencesen[5] Lee Y. Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux. Journal of Differential Equations. 266 (1), 580–599 (2019).
dc.relation.referencesen[6] Eymard R., Gallou¨et T., Herbin R. Finite Volume Method. Handbook of Numerical Analysis. Lions, Janvier (2013).
dc.relation.referencesen[7] Godlewski E., Raviart P. A. Hyperbolic Systems of Conservation Laws. Ellipses (1991).
dc.relation.referencesen[8] Helbing D., Treiber M. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Physical Review Letters. 81 (14), 3042–3045 (1998).
dc.relation.referencesen[9] Chiarello F. A., Goatin P. Global entropy weak solutions for general non-local traffic flow models with the anisotropic kernel. ESAIM: M2AN. 52 (1), 163–180 (2018).
dc.relation.referencesen[10] Belkadi S., Atounti M. Non-oscillatory central schemes for general non-local traffic flow models. International Journal of Applied Mathematics. 35 (4), 515–528 (2022).
dc.relation.referencesen[11] Nessyahu N., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics. 87 (2), 408–463 (1990).
dc.relation.referencesen[12] Sweby P. K. High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis. 21 (5), 995–1011 (1984).
dc.relation.referencesen[13] Blandin S., Goatin P. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numerische Mathematik. 132 (2), 217–241 (2017).
dc.relation.referencesen[14] Goatin P., Scialanga S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media. 11 (1), 107–121 (2016).
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectметоди скінченного об’єму
dc.subjectзакони збереження
dc.subjectнелокальний потік
dc.subjectмоделювання транспортного потоку
dc.subjectобмежувачі
dc.subjectfinite volume methods
dc.subjectconservation laws
dc.subjectnonlocal flux
dc.subjecttraffic flow modeling
dc.subjectlimiters
dc.titleCentral finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules
dc.title.alternativeЦентральні схеми скінченного об’єму для нелокальних моделей транспортних потоків із правилами прогнозу типу Арреніуса
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v10n4_Belkadi_S-Central_finite_volume_1100-1108.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v10n4_Belkadi_S-Central_finite_volume_1100-1108__COVER.png
Size:
366.23 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: