Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules
dc.citation.epage | 1108 | |
dc.citation.issue | 4 | |
dc.citation.journalTitle | Математичне моделювання та комп'ютинг | |
dc.citation.spage | 1100 | |
dc.contributor.affiliation | Перший університет Мухаммеда | |
dc.contributor.affiliation | Mohammed First University | |
dc.contributor.author | Белкаді, С. | |
dc.contributor.author | Атунті, М. | |
dc.contributor.author | Belkadi, S. | |
dc.contributor.author | Atounti, M. | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2025-03-10T09:21:51Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Представлено центральний метод скінченного об’єму та його застосування до нового класу моделей нелокального трафіку з прогнозованою взаємодією типу Арреніуса. Ці моделі можна сформулювати як скалярні закони збереження з нелокальними потоками. Запропонована схема є розвитком неосциляційної центральної схеми Несся–Тадмора. Проведено декілька чисельних експериментів, у яких виконано такі дії: продемонстровано надійність і високу роздільну здатність запропонованого методу; порівняно розв’язки рівнянь з локальними та нелокальними потоками; перевірено, як відстань уперед впливає на чисельний розв’язок. | |
dc.description.abstract | We present a central finite volume method and apply it to a new class of nonlocal traffic flow models with an Arrhenius-type look-ahead interaction. These models can be stated as scalar conservation laws with nonlocal fluxes. The suggested scheme is a development of the Nessyah–Tadmor non-oscillatory central scheme. We conduct several numerical experiments in which we carry out the following actions: we show the robustness and high resolution of the suggested method; we compare the equations’ solutions with local and nonlocal fluxes; we examine how the look-ahead distance affects the numerical solution. | |
dc.format.extent | 1100-1108 | |
dc.format.pages | 9 | |
dc.identifier.citation | Belkadi S. Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules / S. Belkadi, M. Atounti // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1100–1108. | |
dc.identifier.citationen | Belkadi S. Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules / S. Belkadi, M. Atounti // Mathematical Modeling and Computing. — Lviv Politechnic Publishing House, 2023. — Vol 10. — No 4. — P. 1100–1108. | |
dc.identifier.doi | doi.org/10.23939/mmc2023.04.1100 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64062 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Математичне моделювання та комп'ютинг, 4 (10), 2023 | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (10), 2023 | |
dc.relation.references | [1] Lighthill M., Whitham G. B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A. 229 (1178), 317–345 (1995). | |
dc.relation.references | [2] Kuhne R. D., Gartner N. H. 75 Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium. Transportation Research Board E-Circular (2011). | |
dc.relation.references | [3] Sopasakis A., Katsoulakis M. A. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM Journal on Applied Mathematics. 66 (3), 921–944 (2006). | |
dc.relation.references | [4] Kurganov A., Polizzi A. Non-oscillatory central schemes for a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media. 4 (3), 431–451 (2009). | |
dc.relation.references | [5] Lee Y. Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux. Journal of Differential Equations. 266 (1), 580–599 (2019). | |
dc.relation.references | [6] Eymard R., Gallou¨et T., Herbin R. Finite Volume Method. Handbook of Numerical Analysis. Lions, Janvier (2013). | |
dc.relation.references | [7] Godlewski E., Raviart P. A. Hyperbolic Systems of Conservation Laws. Ellipses (1991). | |
dc.relation.references | [8] Helbing D., Treiber M. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Physical Review Letters. 81 (14), 3042–3045 (1998). | |
dc.relation.references | [9] Chiarello F. A., Goatin P. Global entropy weak solutions for general non-local traffic flow models with the anisotropic kernel. ESAIM: M2AN. 52 (1), 163–180 (2018). | |
dc.relation.references | [10] Belkadi S., Atounti M. Non-oscillatory central schemes for general non-local traffic flow models. International Journal of Applied Mathematics. 35 (4), 515–528 (2022). | |
dc.relation.references | [11] Nessyahu N., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics. 87 (2), 408–463 (1990). | |
dc.relation.references | [12] Sweby P. K. High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis. 21 (5), 995–1011 (1984). | |
dc.relation.references | [13] Blandin S., Goatin P. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numerische Mathematik. 132 (2), 217–241 (2017). | |
dc.relation.references | [14] Goatin P., Scialanga S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media. 11 (1), 107–121 (2016). | |
dc.relation.referencesen | [1] Lighthill M., Whitham G. B. On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A. 229 (1178), 317–345 (1995). | |
dc.relation.referencesen | [2] Kuhne R. D., Gartner N. H. 75 Years of the Fundamental Diagram for Traffic Flow Theory: Greenshields Symposium. Transportation Research Board E-Circular (2011). | |
dc.relation.referencesen | [3] Sopasakis A., Katsoulakis M. A. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM Journal on Applied Mathematics. 66 (3), 921–944 (2006). | |
dc.relation.referencesen | [4] Kurganov A., Polizzi A. Non-oscillatory central schemes for a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media. 4 (3), 431–451 (2009). | |
dc.relation.referencesen | [5] Lee Y. Thresholds for shock formation in traffic flow models with nonlocal-concave-convex flux. Journal of Differential Equations. 266 (1), 580–599 (2019). | |
dc.relation.referencesen | [6] Eymard R., Gallou¨et T., Herbin R. Finite Volume Method. Handbook of Numerical Analysis. Lions, Janvier (2013). | |
dc.relation.referencesen | [7] Godlewski E., Raviart P. A. Hyperbolic Systems of Conservation Laws. Ellipses (1991). | |
dc.relation.referencesen | [8] Helbing D., Treiber M. Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Physical Review Letters. 81 (14), 3042–3045 (1998). | |
dc.relation.referencesen | [9] Chiarello F. A., Goatin P. Global entropy weak solutions for general non-local traffic flow models with the anisotropic kernel. ESAIM: M2AN. 52 (1), 163–180 (2018). | |
dc.relation.referencesen | [10] Belkadi S., Atounti M. Non-oscillatory central schemes for general non-local traffic flow models. International Journal of Applied Mathematics. 35 (4), 515–528 (2022). | |
dc.relation.referencesen | [11] Nessyahu N., Tadmor E. Non-oscillatory central differencing for hyperbolic conservation laws. Journal of Computational Physics. 87 (2), 408–463 (1990). | |
dc.relation.referencesen | [12] Sweby P. K. High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis. 21 (5), 995–1011 (1984). | |
dc.relation.referencesen | [13] Blandin S., Goatin P. Well-posedness of a conservation law with non-local flux arising in traffic flow modeling. Numerische Mathematik. 132 (2), 217–241 (2017). | |
dc.relation.referencesen | [14] Goatin P., Scialanga S. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media. 11 (1), 107–121 (2016). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | методи скінченного об’єму | |
dc.subject | закони збереження | |
dc.subject | нелокальний потік | |
dc.subject | моделювання транспортного потоку | |
dc.subject | обмежувачі | |
dc.subject | finite volume methods | |
dc.subject | conservation laws | |
dc.subject | nonlocal flux | |
dc.subject | traffic flow modeling | |
dc.subject | limiters | |
dc.title | Central finite volume schemes for non-local traffic flow models with Arrhenius-type look-ahead rules | |
dc.title.alternative | Центральні схеми скінченного об’єму для нелокальних моделей транспортних потоків із правилами прогнозу типу Арреніуса | |
dc.type | Article |
Files
License bundle
1 - 1 of 1