Development of strategies for reducing traction energy consumption by electric rolling stock

dc.citation.epage52
dc.citation.issue1
dc.citation.spage44
dc.contributor.affiliationUkrainian State University of Railway Transport
dc.contributor.authorЯцько, Сергій
dc.contributor.authorВащенко, Ярослав
dc.contributor.authorСидоренко, Анатолій
dc.contributor.authorYatsko, Serhiy
dc.contributor.authorVashchenko, Yaroslav
dc.contributor.authorSydorenko, Anatoliy
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-26T11:48:15Z
dc.date.available2020-02-26T11:48:15Z
dc.date.created2019-02-26
dc.date.issued2019-02-26
dc.description.abstractУ статті розглянуто захід підвищення енергоефективності перебігу режиму тягового енергоспоживання під час роботи не автономного електричного рухомого складу обладнаним бортовим накопичувачем енергії. Ідея полягає у використанні бортового накопичувача енергії електричного гальмування як додаткового джерела живлення тягового електроприводу в процесі розгону транспортного засобу та в узгодженні його роботи з системою енергопостачання. Це дає змогу не тільки забезпечити незалежність процесів електроспоживання і відновлення кінетичної енергії тяговим рухомим складом, але й знизити втрати в елементах систем тягового і зовнішнього електропостачання. Для підтвердження ефективності запропонованого заходу проведено імітаційне моделювання роботи поїзду метро з асинхронним тяговим електроприводом у поєднанні із запропонованою системою. Отримані результати, у конкретному випадку, продемонстрували скорочення втрат енергії в елементах системи тягового електропостачання під час розгону електропоїзда на 45 % порівняно з втратами при використанні штатної системи тягового електроприводу. З акцентовано увагу на факторах, та їхньому характері, котрі суттєво впливають на протікання режимів тяги та електричного гальмування.
dc.description.abstractThe paper considers a method of increasing the energy efficiency of the traction power consumption during operation of a non-autonomous electric rolling stock equipped with an onboard energy storage. The idea is to use the onboard energy storage of the electric braking as an additional power source for the traction electric drive in the process of vehicle acceleration and to coordinate its work with the power supply system. This not only ensures the independence of the processes of electric power consumption and kinetic energy recovery by the traction equipment, but also reduces losses in the elements of traction and external power supply systems. To confirm the effectiveness of the proposed method, we simulated the operation of a metro train with asynchronous traction electric drive in combination with the proposed system. The results obtained, in this case, demonstrated a reduction of energy losses in the elements of the traction power supply system during the electric train acceleration by 45 % compared with the losses when using a regular traction drive system. Attention is paid to the factors and their characteristics that exert significant influence on the traction and electric braking processes.
dc.format.extent44-52
dc.format.pages9
dc.identifier.citationYatsko S. Development of strategies for reducing traction energy consumption by electric rolling stock / Serhiy Yatsko, Yaroslav Vashchenko, Anatoliy Sydorenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 44–52.
dc.identifier.citationenYatsko S. Development of strategies for reducing traction energy consumption by electric rolling stock / Serhiy Yatsko, Yaroslav Vashchenko, Anatoliy Sydorenko // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 9. — No 1. — P. 44–52.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46088
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofComputational Problems of Electrical Engineering, 1 (9), 2019
dc.relation.references1. M. V.Shevlyugin, Resource and energy-saving technologies in railway transport and subways, implemented using energy storage, Extended abstract of candidate’s thesis, Moscow, 2009. [Russian].
dc.relation.references2. C. Sumpavakup, et al., “Optimal energy saving in DC railway system with on-board energy storage system by using peak demand cutting strategy”, no. 25(4), J. Mod. Transport, pp. 223–235, 2017.
dc.relation.references3. M. Dominguez, A. Fernandez-Cardador, A. P. Cucala, and R. R. Pecharroman, “Energy Savings in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles,” IEEE Transactions on Automation Science and Engineering, vol. 9, no. 3, pp. 496–504, Jul. 2012.
dc.relation.references4. S. Yatsko, B. Sytnik, Y. Vashchenko, A. Sidorenko, B. Liubarskyi, I. Veretennikov, and M. Glebova, “Comprehensive approach to modeling dynamic processes in the system of underground rail electric traction,” Eastern-European Journal of Enterprise Technologies, vol. 1, no. 9 (97), pp. 48–57, Jan. 2019.
dc.relation.references5. D. Iannuzzi and P. Tricoli, “Optimal control strategy of onboard supercapacitor storage system for light railway vehicles,” 2010 IEEE International Symposium on Industrial Electronics, Jul. 2010.
dc.relation.references6. L. Battistelli, F. Ciccarelli, D. Lauria, and D. Proto, “Optimal design of DC electrified railway stationary storage system,” 2009 International Conference on Clean Electrical Power, Jun. 2009.
dc.relation.references7. S. Su, T. Tang, and Y. Wang, “Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model,” Energies, vol. 9, no. 2, p. 105, Feb. 2016.
dc.relation.references8. Z. Yang, Z. Yang, H. Xia, F. Lin, and F. Zhu, “Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit,” Energies, vol. 10, no. 4, p. 520, Apr. 2017.
dc.relation.references9. B. Sytnik, V. Bryksin, S. Yatsko, and Y. Vashchenko, “Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy,” Eastern-European Journal of Enterprise Technologies, vol. 2, no. 4 (98), pp. 6–13, Mar. 2019.
dc.relation.references10. S. Ruigang, Y. Tianchen, Y. Jian, and H. Hao, “Simulation of braking energy recovery for the metro vehicles based on the traction experiment system,” SIMULATION, vol. 93, no. 12, pp. 1099–1112, Aug. 2017.
dc.relation.referencesen1. M. V.Shevlyugin, Resource and energy-saving technologies in railway transport and subways, implemented using energy storage, Extended abstract of candidate’s thesis, Moscow, 2009. [Russian].
dc.relation.referencesen2. C. Sumpavakup, et al., "Optimal energy saving in DC railway system with on-board energy storage system by using peak demand cutting strategy", no. 25(4), J. Mod. Transport, pp. 223–235, 2017.
dc.relation.referencesen3. M. Dominguez, A. Fernandez-Cardador, A. P. Cucala, and R. R. Pecharroman, "Energy Savings in Metropolitan Railway Substations Through Regenerative Energy Recovery and Optimal Design of ATO Speed Profiles," IEEE Transactions on Automation Science and Engineering, vol. 9, no. 3, pp. 496–504, Jul. 2012.
dc.relation.referencesen4. S. Yatsko, B. Sytnik, Y. Vashchenko, A. Sidorenko, B. Liubarskyi, I. Veretennikov, and M. Glebova, "Comprehensive approach to modeling dynamic processes in the system of underground rail electric traction," Eastern-European Journal of Enterprise Technologies, vol. 1, no. 9 (97), pp. 48–57, Jan. 2019.
dc.relation.referencesen5. D. Iannuzzi and P. Tricoli, "Optimal control strategy of onboard supercapacitor storage system for light railway vehicles," 2010 IEEE International Symposium on Industrial Electronics, Jul. 2010.
dc.relation.referencesen6. L. Battistelli, F. Ciccarelli, D. Lauria, and D. Proto, "Optimal design of DC electrified railway stationary storage system," 2009 International Conference on Clean Electrical Power, Jun. 2009.
dc.relation.referencesen7. S. Su, T. Tang, and Y. Wang, "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, vol. 9, no. 2, p. 105, Feb. 2016.
dc.relation.referencesen8. Z. Yang, Z. Yang, H. Xia, F. Lin, and F. Zhu, "Supercapacitor State Based Control and Optimization for Multiple Energy Storage Devices Considering Current Balance in Urban Rail Transit," Energies, vol. 10, no. 4, p. 520, Apr. 2017.
dc.relation.referencesen9. B. Sytnik, V. Bryksin, S. Yatsko, and Y. Vashchenko, "Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy," Eastern-European Journal of Enterprise Technologies, vol. 2, no. 4 (98), pp. 6–13, Mar. 2019.
dc.relation.referencesen10. S. Ruigang, Y. Tianchen, Y. Jian, and H. Hao, "Simulation of braking energy recovery for the metro vehicles based on the traction experiment system," SIMULATION, vol. 93, no. 12, pp. 1099–1112, Aug. 2017.
dc.rights.holder© Національний університет “Львівська політехніка”, 2019
dc.subjectenergy efficiency
dc.subjectpower consumption
dc.subjectelectric rolling stock
dc.titleDevelopment of strategies for reducing traction energy consumption by electric rolling stock
dc.title.alternativeРозвиток стратегій зменшення споживання тягової енергії електричним рухомим складом
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v9n1_Yatsko_S-Development_of_strategies_44-52.pdf
Size:
617.38 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v9n1_Yatsko_S-Development_of_strategies_44-52__COVER.png
Size:
577.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.07 KB
Format:
Plain Text
Description: