Challenges of Using Machine Learning Algorithms for Evaluating and Predicting Software Defects
dc.citation.epage | 221 | |
dc.citation.journalTitle | Сучасні проблеми в радіоелектроніці, телекомунікаціях(СПРТ’2024) : матеріали Міжнародної науково-технічної конференції | |
dc.citation.spage | 218 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Yakovyna, V. | |
dc.contributor.author | Khil, O. | |
dc.coverage.placename | Львів | |
dc.coverage.temporal | 23-24 травня 2024 року | |
dc.coverage.temporal | 23-24 May 2024 | |
dc.date.accessioned | 2024-06-25T09:29:18Z | |
dc.date.available | 2024-06-25T09:29:18Z | |
dc.date.created | 2024-05-23 | |
dc.date.issued | 2024-05-23 | |
dc.format.extent | 218-221 | |
dc.format.pages | 4 | |
dc.identifier.citation | Yakovyna V. Challenges of Using Machine Learning Algorithms for Evaluating and Predicting Software Defects / V. Yakovyna, O. Khil // Сучасні проблеми в радіоелектроніці, телекомунікаціях(СПРТ’2024) : матеріали Міжнародної науково-технічної конференції, 23-24 May 2024. — Lviv Politechnic Publishing House, 2024. — P. 218–221. — (Information Systems and Technologies. Automated Control Systems. Robotics.). | |
dc.identifier.citationen | Yakovyna V. Challenges of Using Machine Learning Algorithms for Evaluating and Predicting Software Defects / V. Yakovyna, O. Khil // Suchasni problemy v radioelektronitsi, telekomunikatsiiakh(SPRT2024) : materialy Mizhnarodnoi naukovo-tekhnichnoi konferentsii, 23-24 May 2024. — Lviv Politechnic Publishing House, 2024. — P. 218–221. — (Information Systems and Technologies. Automated Control Systems. Robotics.). | |
dc.identifier.isbn | 978-966-941-945-3 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62261 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Сучасні проблеми в радіоелектроніці, телекомунікаціях(СПРТ’2024) : матеріали Міжнародної науково-технічної конференції, 2024 | |
dc.relation.references | 1. Bhat, N.A., Farooq, S.U. An empirical evaluation of defect prediction approaches in within-project and cross-project context. Software Qual J 31, 917–946 (2023). https://doi.org/10.1007/s11219-023-09615-7 | |
dc.relation.references | 2. Jing, XY., Chen, H., Xu, B. (2023). Cross-Project Defect Prediction. In: Intelligent Software Defect Prediction. Springer, Singapore. https://doi.org/10.1007/978-981-99-2842-2_4 | |
dc.relation.references | 3. Wu, J., Wu , Y., Niu, N. et al. MHCPDP: multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder. Software Qual J 29, 405–430 (2021). https://doi.org/10.1007/s11219-021-09553-2 | |
dc.relation.references | 4. Lima, M., Valle, V., Costa, E., Lira, F., & Gadelha, B. (2019). Software engineering repositories: expanding the promise database. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering (pp. 427-436). https://doi.org/10.1145/3350768.3350776 | |
dc.relation.references | 5. Siddiqui, T., Mustaqeem, M. Performance evaluation of software defect prediction with NASA dataset using machine learning techniques. Int. j. inf. tecnol. 15, 4131–4139 (2023). https://doi.org/10.1007/s41870-023-01528-9 | |
dc.relation.references | 6. Malhotra, R., Chawla, S. & Sharma, A. Software defect prediction using hybrid techniques: a systematic literature review. Soft Comput 27, 8255–8288 (2023). https://doi.org/10.1007/s00500-022-07738-w | |
dc.relation.references | 7. Niu, L., Wan, J., Wang, H. et al. Cost-sensitive Dictionary Learning for Software Defect Prediction. Neural Process Lett 52, 2415–2449 (2020). https://doi.org/10.1007/s11063-020-10355-z | |
dc.relation.references | 8. Omondiagbe, Osayande Pascal (2022). Dataset For Software Defect Predictions. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19516858.v1 | |
dc.relation.references | 9. Esteves, G., Figueiredo, E., Veloso, A. et al. Understanding machine learning software defect predictions. Autom Softw Eng 27, 369–392 (2020). https://doi.org/10.1007/s10515-020-00277-4 | |
dc.relation.references | 10.Khalid A, Badshah G, Ayub N, Shiraz M, Ghouse M. Software Defect Prediction Analysis Using Machine Learning Techniques. Sustainability. 2023; 15(6):5517. https://doi.org/10.3390/su15065517 | |
dc.relation.referencesen | 1. Bhat, N.A., Farooq, S.U. An empirical evaluation of defect prediction approaches in within-project and cross-project context. Software Qual J 31, 917–946 (2023). https://doi.org/10.1007/s11219-023-09615-7 | |
dc.relation.referencesen | 2. Jing, XY., Chen, H., Xu, B. (2023). Cross-Project Defect Prediction. In: Intelligent Software Defect Prediction. Springer, Singapore. https://doi.org/10.1007/978-981-99-2842-2_4 | |
dc.relation.referencesen | 3. Wu, J., Wu , Y., Niu, N. et al. MHCPDP: multi-source heterogeneous cross-project defect prediction via multi-source transfer learning and autoencoder. Software Qual J 29, 405–430 (2021). https://doi.org/10.1007/s11219-021-09553-2 | |
dc.relation.referencesen | 4. Lima, M., Valle, V., Costa, E., Lira, F., & Gadelha, B. (2019). Software engineering repositories: expanding the promise database. In Proceedings of the XXXIII Brazilian Symposium on Software Engineering (pp. 427-436). https://doi.org/10.1145/3350768.3350776 | |
dc.relation.referencesen | 5. Siddiqui, T., Mustaqeem, M. Performance evaluation of software defect prediction with NASA dataset using machine learning techniques. Int. j. inf. tecnol. 15, 4131–4139 (2023). https://doi.org/10.1007/s41870-023-01528-9 | |
dc.relation.referencesen | 6. Malhotra, R., Chawla, S. & Sharma, A. Software defect prediction using hybrid techniques: a systematic literature review. Soft Comput 27, 8255–8288 (2023). https://doi.org/10.1007/s00500-022-07738-w | |
dc.relation.referencesen | 7. Niu, L., Wan, J., Wang, H. et al. Cost-sensitive Dictionary Learning for Software Defect Prediction. Neural Process Lett 52, 2415–2449 (2020). https://doi.org/10.1007/s11063-020-10355-z | |
dc.relation.referencesen | 8. Omondiagbe, Osayande Pascal (2022). Dataset For Software Defect Predictions. figshare. Dataset. https://doi.org/10.6084/m9.figshare.19516858.v1 | |
dc.relation.referencesen | 9. Esteves, G., Figueiredo, E., Veloso, A. et al. Understanding machine learning software defect predictions. Autom Softw Eng 27, 369–392 (2020). https://doi.org/10.1007/s10515-020-00277-4 | |
dc.relation.referencesen | 10.Khalid A, Badshah G, Ayub N, Shiraz M, Ghouse M. Software Defect Prediction Analysis Using Machine Learning Techniques. Sustainability. 2023; 15(6):5517. https://doi.org/10.3390/su15065517 | |
dc.relation.uri | https://doi.org/10.1007/s11219-023-09615-7 | |
dc.relation.uri | https://doi.org/10.1007/978-981-99-2842-2_4 | |
dc.relation.uri | https://doi.org/10.1007/s11219-021-09553-2 | |
dc.relation.uri | https://doi.org/10.1145/3350768.3350776 | |
dc.relation.uri | https://doi.org/10.1007/s41870-023-01528-9 | |
dc.relation.uri | https://doi.org/10.1007/s00500-022-07738-w | |
dc.relation.uri | https://doi.org/10.1007/s11063-020-10355-z | |
dc.relation.uri | https://doi.org/10.6084/m9.figshare.19516858.v1 | |
dc.relation.uri | https://doi.org/10.1007/s10515-020-00277-4 | |
dc.relation.uri | https://doi.org/10.3390/su15065517 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.title | Challenges of Using Machine Learning Algorithms for Evaluating and Predicting Software Defects | |
dc.type | Article |
Files
License bundle
1 - 1 of 1