Потенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот
dc.citation.epage | 18 | |
dc.citation.issue | 1 | |
dc.citation.spage | 8 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Полюжин, І. П. | |
dc.contributor.author | Цюпко, Ф. І. | |
dc.contributor.author | Ларук, М. М. | |
dc.contributor.author | Юрін, О. О. | |
dc.contributor.author | Гумінілович, Р. Р. | |
dc.contributor.author | Poliuzhyn, I. P. | |
dc.contributor.author | Tsiupko, F. I. | |
dc.contributor.author | Laruk, M. M. | |
dc.contributor.author | Yurin, O. O. | |
dc.contributor.author | Guminilovych, R. R. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T08:14:44Z | |
dc.date.available | 2024-01-22T08:14:44Z | |
dc.date.created | 2021-03-16 | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Розглянуто можливість одночасного потенціометричного та кондуктометричного титрування для визначення кислотного (К.Ч.) та амінного чисел (А.Ч.) реакційної суміші амідування технічних жирних кислот (ЖК) диетилентриаміном (ДЕТА). На основі модельних сумішей ДЕТА та промислової проби ЖК виконано інтерпретацію кривих титрування. Отримані результати вказують на можливість визначення значень К.Ч. та А.Ч. промислових органічних продуктів та реакційних сумішей амідування послідовним титруванням однієї наважки | |
dc.description.abstract | The possibility of simultaneous potentiometric and conductometric titration is considered for determination of the acid (A.N.) and amine (AM.N.) numbers of the amidation reaction mixture for technical fatty acids (F.A.) by diethylenetriamine (DETA). Interpretation of titration curves was performed on the basis of model mixtures for DETA and F.A. industrial sample. The obtained results indicate the possibility of determining A.N. and AM.N. values by sequential titration of one sample for industrial organic products and amidation reaction mixtures. | |
dc.format.extent | 8-18 | |
dc.format.pages | 11 | |
dc.identifier.citation | Потенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот / І. П. Полюжин, Ф. І. Цюпко, М. М. Ларук, О. О. Юрін, Р. Р. Гумінілович // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 8–18. | |
dc.identifier.citationen | Potentiometric and conductometric determination of amine and acid numbers of reaction mixture from fatty acid amidation / I. P. Poliuzhyn, F. I. Tsiupko, M. M. Laruk, O. O. Yurin, R. R. Guminilovych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 8–18. | |
dc.identifier.doi | doi.org/ 10.23939/ctas2021.01.008 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60849 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (4), 2021 | |
dc.relation.references | 1. Hill, K. (2001). Fats and Oils as Oleochemical Raw Materials. Journal of Oleo Science, 50(5), 433–444. doi:10.5650/jos.50.433 | |
dc.relation.references | 2. Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Synthesis of Palm Oil-Based Diethanolamides. Journal of the American Oil Chemists Society, 84(10), 945-952. doi:10.1007/s11746-007-1123-8 | |
dc.relation.references | 3. Awasthi, N. P., & Singh, R. P. (2009). Microwave-assisted facile and convenient synthesis of fatty acid amide (erucamide): Chemical-catalyzed rapid method. European Journal of Lipid Science and Technology, 111(2), 202–206. doi:10.1002/ejlt.200800186 | |
dc.relation.references | 4. Kramarev, S., & Husanov, A. (2016). Influence of vacuum on kinetic of low quality rapeseed oil amidation by aminoethylethanolamine. Eastern-European Journal of Enterprise Technologies, 4(6(82)), 12. doi:10.15587/1729-4061.2016.74856 | |
dc.relation.references | 5. ДСТУ ISO 2114:2014. Пластмаси (складні поліефірні смоли) та фарби і лаки (зв’язувальні). Метод визначання загального кислотного числа (ISO 2114:2000, IDT) | |
dc.relation.references | 6. ДСТУ 4350: 2004. Олії. Методи визначання кислотного числа (ISO 660: 1996, NEQ). | |
dc.relation.references | 7. ASTM D 2073–92 (Reapproved 1998) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines, Amidoamines, and Diamines by Referee Potentiometric Method. https://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of) | |
dc.relation.references | 8. ASTM D2074 - 07(2013) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method https://www.astm.org/Standards/D2074.htm | |
dc.relation.references | 9. Cacace, C., Elia, L., Elia, V., Napoli, E., & Niccoli, M. (2009). Conductometric and pHmetric titrations of Extremely Diluted Solutions using HCl solutions as titrant. Journal of Molecular Liquids, 146(3), 122–126. doi:10.1016/j.molliq.2009.02.012 | |
dc.relation.references | 10. Elia, V., Napoli, E., & Niccoli, M. (2009). A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Journal of Molecular Liquids, 148(1), 45–50. doi:10.1016/j.molliq.2009.06.005 | |
dc.relation.references | 11. Roger, G. M., Durand-Vidal, S., Bernard, O., Mériguet, G., Altmann, S., & Turq, P. (2010). Characterization of humic substances and polyacrylic acid: A high precision conductimetry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1–3), 51–57. doi:10.1016/j.colsurfa.2009.12.029 | |
dc.relation.references | 12. Ghorbani, R., Ghasemi, J., & Abdollahi, B. (2006). Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares. Journal of Hazardous Materials, 131(1–3), 13–18. doi:10.1016/j.jhazmat.2005.09.016 | |
dc.relation.references | 13. Coelho, L. H., & Gutz, I. G. (2006). Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression. Talanta, 69(1), 204–209. doi:10.1016/j.talanta.2005.09.025 | |
dc.relation.references | 14. Riggle, J. (2002). Conductometric characterization of dissolved humic materials. Talanta, 57(3), 519–526. doi:10.1016/s0039-9140(02)00052-8 | |
dc.relation.references | 15. Riggle, J., & Wandruszka, R. V. (2004). Dynamic conductivity measurements in humic and fulvic acid solutions. Talanta, 62(1), 103–108. doi:10.1016/s0039-9140(03)00404-1 | |
dc.relation.references | 16. Vostokov, V. M. (2009). Kriterii instrumental’nogo kislotno-osnovnogo titrovaniya rastvorov elektrolitov. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, No. 3, 100–106. Retrieved from https://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov. | |
dc.relation.references | 17. Fras, L., Laine, J., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., & Doleсek, V. (2004). Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 92(5), 3186–3195. doi:10.1002/app.20294 | |
dc.relation.references | 18. Kowalczyk-Marzec, A., Kurzawa, M., Szydlowska-Czerniak, A., & Szlyk, E. (2002). Conductometric Determination of Phenothiazine Derivatives by Precipitation Titration. Chemia Analityczna (Warsaw), 47, 613–618. Retrieved from http://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf | |
dc.relation.references | 19. Kulichenko, S. A., & Fesenko, S. A. (2002). Titrimetric Determination of Furosemide Using Aqueous–Micellar Solutions of Surfactants. Journal of Analytical Chemistry, 57(3), 231–234. doi:10.1023/a:1014444332118 | |
dc.relation.references | 20. Wang, Z., Shirley, M. D., Meikle, S. T., Whitby, R. L., & Mikhalovsky, S. V. (2009). The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), 73–79. doi:10.1016/j.carbon.2008.09.038 | |
dc.relation.references | 21. Goertzen, S. L., Thöriault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252–1261. doi:10.1016/j. carbon.2009.11.050 | |
dc.relation.references | 22. Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313–3322. doi:10.1016/j.carbon.2010.05.004 | |
dc.relation.references | 23. Schönherr, J., Buchheim, J. R., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C(Journal of Carbon Research), 4(2), 21. 1–13. doi:10.3390/c4020021 | |
dc.relation.references | 24. Schönherr, J., Buchheim, J., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C(Journal of Carbon Research), 4(2), 22. 1–16. doi:10.3390/c4020022 | |
dc.relation.references | 25. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg. | |
dc.relation.referencesen | 1. Hill, K. (2001). Fats and Oils as Oleochemical Raw Materials. Journal of Oleo Science, 50(5), 433–444. doi:10.5650/jos.50.433 | |
dc.relation.referencesen | 2. Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Synthesis of Palm Oil-Based Diethanolamides. Journal of the American Oil Chemists Society, 84(10), 945-952. doi:10.1007/s11746-007-1123-8 | |
dc.relation.referencesen | 3. Awasthi, N. P., & Singh, R. P. (2009). Microwave-assisted facile and convenient synthesis of fatty acid amide (erucamide): Chemical-catalyzed rapid method. European Journal of Lipid Science and Technology, 111(2), 202–206. doi:10.1002/ejlt.200800186 | |
dc.relation.referencesen | 4. Kramarev, S., & Husanov, A. (2016). Influence of vacuum on kinetic of low quality rapeseed oil amidation by aminoethylethanolamine. Eastern-European Journal of Enterprise Technologies, 4(6(82)), 12. doi:10.15587/1729-4061.2016.74856 | |
dc.relation.referencesen | 5. DSTU ISO 2114:2014. Plastmasy (skladni poliefirni smoly) ta farby i laky (zviazuvalni). Metod vyznachannia zahalnoho kyslotnoho chysla (ISO 2114:2000, IDT) | |
dc.relation.referencesen | 6. DSTU 4350: 2004. Olii. Metody vyznachannia kyslotnoho chysla (ISO 660: 1996, NEQ). | |
dc.relation.referencesen | 7. ASTM D 2073–92 (Reapproved 1998) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines, Amidoamines, and Diamines by Referee Potentiometric Method. https://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of) | |
dc.relation.referencesen | 8. ASTM D2074 - 07(2013) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method https://www.astm.org/Standards/D2074.htm | |
dc.relation.referencesen | 9. Cacace, C., Elia, L., Elia, V., Napoli, E., & Niccoli, M. (2009). Conductometric and pHmetric titrations of Extremely Diluted Solutions using HCl solutions as titrant. Journal of Molecular Liquids, 146(3), 122–126. doi:10.1016/j.molliq.2009.02.012 | |
dc.relation.referencesen | 10. Elia, V., Napoli, E., & Niccoli, M. (2009). A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Journal of Molecular Liquids, 148(1), 45–50. doi:10.1016/j.molliq.2009.06.005 | |
dc.relation.referencesen | 11. Roger, G. M., Durand-Vidal, S., Bernard, O., Mériguet, G., Altmann, S., & Turq, P. (2010). Characterization of humic substances and polyacrylic acid: A high precision conductimetry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1–3), 51–57. doi:10.1016/j.colsurfa.2009.12.029 | |
dc.relation.referencesen | 12. Ghorbani, R., Ghasemi, J., & Abdollahi, B. (2006). Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares. Journal of Hazardous Materials, 131(1–3), 13–18. doi:10.1016/j.jhazmat.2005.09.016 | |
dc.relation.referencesen | 13. Coelho, L. H., & Gutz, I. G. (2006). Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression. Talanta, 69(1), 204–209. doi:10.1016/j.talanta.2005.09.025 | |
dc.relation.referencesen | 14. Riggle, J. (2002). Conductometric characterization of dissolved humic materials. Talanta, 57(3), 519–526. doi:10.1016/s0039-9140(02)00052-8 | |
dc.relation.referencesen | 15. Riggle, J., & Wandruszka, R. V. (2004). Dynamic conductivity measurements in humic and fulvic acid solutions. Talanta, 62(1), 103–108. doi:10.1016/s0039-9140(03)00404-1 | |
dc.relation.referencesen | 16. Vostokov, V. M. (2009). Kriterii instrumental’nogo kislotno-osnovnogo titrovaniya rastvorov elektrolitov. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, No. 3, 100–106. Retrieved from https://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov. | |
dc.relation.referencesen | 17. Fras, L., Laine, J., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., & Dolesek, V. (2004). Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 92(5), 3186–3195. doi:10.1002/app.20294 | |
dc.relation.referencesen | 18. Kowalczyk-Marzec, A., Kurzawa, M., Szydlowska-Czerniak, A., & Szlyk, E. (2002). Conductometric Determination of Phenothiazine Derivatives by Precipitation Titration. Chemia Analityczna (Warsaw), 47, 613–618. Retrieved from http://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf | |
dc.relation.referencesen | 19. Kulichenko, S. A., & Fesenko, S. A. (2002). Titrimetric Determination of Furosemide Using Aqueous–Micellar Solutions of Surfactants. Journal of Analytical Chemistry, 57(3), 231–234. doi:10.1023/a:1014444332118 | |
dc.relation.referencesen | 20. Wang, Z., Shirley, M. D., Meikle, S. T., Whitby, R. L., & Mikhalovsky, S. V. (2009). The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), 73–79. doi:10.1016/j.carbon.2008.09.038 | |
dc.relation.referencesen | 21. Goertzen, S. L., Thöriault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252–1261. doi:10.1016/j. carbon.2009.11.050 | |
dc.relation.referencesen | 22. Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313–3322. doi:10.1016/j.carbon.2010.05.004 | |
dc.relation.referencesen | 23. Schönherr, J., Buchheim, J. R., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C(Journal of Carbon Research), 4(2), 21. 1–13. doi:10.3390/P.4020021 | |
dc.relation.referencesen | 24. Schönherr, J., Buchheim, J., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C(Journal of Carbon Research), 4(2), 22. 1–16. doi:10.3390/P.4020022 | |
dc.relation.referencesen | 25. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg. | |
dc.relation.uri | https://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of | |
dc.relation.uri | https://www.astm.org/Standards/D2074.htm | |
dc.relation.uri | https://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov | |
dc.relation.uri | http://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | амінне число | |
dc.subject | кислотне число | |
dc.subject | потенціометрія | |
dc.subject | кондуктометрія | |
dc.subject | амідування жирних кислот | |
dc.subject | amine number | |
dc.subject | acid number | |
dc.subject | potentiometry | |
dc.subject | conductometry | |
dc.subject | amidation of fatty acids | |
dc.title | Потенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот | |
dc.title.alternative | Potentiometric and conductometric determination of amine and acid numbers of reaction mixture from fatty acid amidation | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1