Потенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот

dc.citation.epage18
dc.citation.issue1
dc.citation.spage8
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПолюжин, І. П.
dc.contributor.authorЦюпко, Ф. І.
dc.contributor.authorЛарук, М. М.
dc.contributor.authorЮрін, О. О.
dc.contributor.authorГумінілович, Р. Р.
dc.contributor.authorPoliuzhyn, I. P.
dc.contributor.authorTsiupko, F. I.
dc.contributor.authorLaruk, M. M.
dc.contributor.authorYurin, O. O.
dc.contributor.authorGuminilovych, R. R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T08:14:44Z
dc.date.available2024-01-22T08:14:44Z
dc.date.created2021-03-16
dc.date.issued2021-03-16
dc.description.abstractРозглянуто можливість одночасного потенціометричного та кондуктометричного титрування для визначення кислотного (К.Ч.) та амінного чисел (А.Ч.) реакційної суміші амідування технічних жирних кислот (ЖК) диетилентриаміном (ДЕТА). На основі модельних сумішей ДЕТА та промислової проби ЖК виконано інтерпретацію кривих титрування. Отримані результати вказують на можливість визначення значень К.Ч. та А.Ч. промислових органічних продуктів та реакційних сумішей амідування послідовним титруванням однієї наважки
dc.description.abstractThe possibility of simultaneous potentiometric and conductometric titration is considered for determination of the acid (A.N.) and amine (AM.N.) numbers of the amidation reaction mixture for technical fatty acids (F.A.) by diethylenetriamine (DETA). Interpretation of titration curves was performed on the basis of model mixtures for DETA and F.A. industrial sample. The obtained results indicate the possibility of determining A.N. and AM.N. values by sequential titration of one sample for industrial organic products and amidation reaction mixtures.
dc.format.extent8-18
dc.format.pages11
dc.identifier.citationПотенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот / І. П. Полюжин, Ф. І. Цюпко, М. М. Ларук, О. О. Юрін, Р. Р. Гумінілович // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2021. — Том 4. — № 1. — С. 8–18.
dc.identifier.citationenPotentiometric and conductometric determination of amine and acid numbers of reaction mixture from fatty acid amidation / I. P. Poliuzhyn, F. I. Tsiupko, M. M. Laruk, O. O. Yurin, R. R. Guminilovych // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 4. — No 1. — P. 8–18.
dc.identifier.doidoi.org/ 10.23939/ctas2021.01.008
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60849
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (4), 2021
dc.relation.references1. Hill, K. (2001). Fats and Oils as Oleochemical Raw Materials. Journal of Oleo Science, 50(5), 433–444. doi:10.5650/jos.50.433
dc.relation.references2. Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Synthesis of Palm Oil-Based Diethanolamides. Journal of the American Oil Chemists Society, 84(10), 945-952. doi:10.1007/s11746-007-1123-8
dc.relation.references3. Awasthi, N. P., & Singh, R. P. (2009). Microwave-assisted facile and convenient synthesis of fatty acid amide (erucamide): Chemical-catalyzed rapid method. European Journal of Lipid Science and Technology, 111(2), 202–206. doi:10.1002/ejlt.200800186
dc.relation.references4. Kramarev, S., & Husanov, A. (2016). Influence of vacuum on kinetic of low quality rapeseed oil amidation by aminoethylethanolamine. Eastern-European Journal of Enterprise Technologies, 4(6(82)), 12. doi:10.15587/1729-4061.2016.74856
dc.relation.references5. ДСТУ ISO 2114:2014. Пластмаси (складні поліефірні смоли) та фарби і лаки (зв’язувальні). Метод визначання загального кислотного числа (ISO 2114:2000, IDT)
dc.relation.references6. ДСТУ 4350: 2004. Олії. Методи визначання кислотного числа (ISO 660: 1996, NEQ).
dc.relation.references7. ASTM D 2073–92 (Reapproved 1998) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines, Amidoamines, and Diamines by Referee Potentiometric Method. https://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of)
dc.relation.references8. ASTM D2074 - 07(2013) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method https://www.astm.org/Standards/D2074.htm
dc.relation.references9. Cacace, C., Elia, L., Elia, V., Napoli, E., & Niccoli, M. (2009). Conductometric and pHmetric titrations of Extremely Diluted Solutions using HCl solutions as titrant. Journal of Molecular Liquids, 146(3), 122–126. doi:10.1016/j.molliq.2009.02.012
dc.relation.references10. Elia, V., Napoli, E., & Niccoli, M. (2009). A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Journal of Molecular Liquids, 148(1), 45–50. doi:10.1016/j.molliq.2009.06.005
dc.relation.references11. Roger, G. M., Durand-Vidal, S., Bernard, O., Mériguet, G., Altmann, S., & Turq, P. (2010). Characterization of humic substances and polyacrylic acid: A high precision conductimetry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1–3), 51–57. doi:10.1016/j.colsurfa.2009.12.029
dc.relation.references12. Ghorbani, R., Ghasemi, J., & Abdollahi, B. (2006). Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares. Journal of Hazardous Materials, 131(1–3), 13–18. doi:10.1016/j.jhazmat.2005.09.016
dc.relation.references13. Coelho, L. H., & Gutz, I. G. (2006). Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression. Talanta, 69(1), 204–209. doi:10.1016/j.talanta.2005.09.025
dc.relation.references14. Riggle, J. (2002). Conductometric characterization of dissolved humic materials. Talanta, 57(3), 519–526. doi:10.1016/s0039-9140(02)00052-8
dc.relation.references15. Riggle, J., & Wandruszka, R. V. (2004). Dynamic conductivity measurements in humic and fulvic acid solutions. Talanta, 62(1), 103–108. doi:10.1016/s0039-9140(03)00404-1
dc.relation.references16. Vostokov, V. M. (2009). Kriterii instrumental’nogo kislotno-osnovnogo titrovaniya rastvorov elektrolitov. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, No. 3, 100–106. Retrieved from https://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov.
dc.relation.references17. Fras, L., Laine, J., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., & Doleсek, V. (2004). Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 92(5), 3186–3195. doi:10.1002/app.20294
dc.relation.references18. Kowalczyk-Marzec, A., Kurzawa, M., Szydlowska-Czerniak, A., & Szlyk, E. (2002). Conductometric Determination of Phenothiazine Derivatives by Precipitation Titration. Chemia Analityczna (Warsaw), 47, 613–618. Retrieved from http://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf
dc.relation.references19. Kulichenko, S. A., & Fesenko, S. A. (2002). Titrimetric Determination of Furosemide Using Aqueous–Micellar Solutions of Surfactants. Journal of Analytical Chemistry, 57(3), 231–234. doi:10.1023/a:1014444332118
dc.relation.references20. Wang, Z., Shirley, M. D., Meikle, S. T., Whitby, R. L., & Mikhalovsky, S. V. (2009). The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), 73–79. doi:10.1016/j.carbon.2008.09.038
dc.relation.references21. Goertzen, S. L., Thöriault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252–1261. doi:10.1016/j. carbon.2009.11.050
dc.relation.references22. Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313–3322. doi:10.1016/j.carbon.2010.05.004
dc.relation.references23. Schönherr, J., Buchheim, J. R., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C(Journal of Carbon Research), 4(2), 21. 1–13. doi:10.3390/c4020021
dc.relation.references24. Schönherr, J., Buchheim, J., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C(Journal of Carbon Research), 4(2), 22. 1–16. doi:10.3390/c4020022
dc.relation.references25. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg.
dc.relation.referencesen1. Hill, K. (2001). Fats and Oils as Oleochemical Raw Materials. Journal of Oleo Science, 50(5), 433–444. doi:10.5650/jos.50.433
dc.relation.referencesen2. Lee, C. S., Ooi, T. L., Chuah, C. H., & Ahmad, S. (2007). Synthesis of Palm Oil-Based Diethanolamides. Journal of the American Oil Chemists Society, 84(10), 945-952. doi:10.1007/s11746-007-1123-8
dc.relation.referencesen3. Awasthi, N. P., & Singh, R. P. (2009). Microwave-assisted facile and convenient synthesis of fatty acid amide (erucamide): Chemical-catalyzed rapid method. European Journal of Lipid Science and Technology, 111(2), 202–206. doi:10.1002/ejlt.200800186
dc.relation.referencesen4. Kramarev, S., & Husanov, A. (2016). Influence of vacuum on kinetic of low quality rapeseed oil amidation by aminoethylethanolamine. Eastern-European Journal of Enterprise Technologies, 4(6(82)), 12. doi:10.15587/1729-4061.2016.74856
dc.relation.referencesen5. DSTU ISO 2114:2014. Plastmasy (skladni poliefirni smoly) ta farby i laky (zviazuvalni). Metod vyznachannia zahalnoho kyslotnoho chysla (ISO 2114:2000, IDT)
dc.relation.referencesen6. DSTU 4350: 2004. Olii. Metody vyznachannia kyslotnoho chysla (ISO 660: 1996, NEQ).
dc.relation.referencesen7. ASTM D 2073–92 (Reapproved 1998) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines, Amidoamines, and Diamines by Referee Potentiometric Method. https://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of)
dc.relation.referencesen8. ASTM D2074 - 07(2013) Standard Test Methods for Total, Primary, Secondary, and Tertiary Amine Values of Fatty Amines by Alternative Indicator Method https://www.astm.org/Standards/D2074.htm
dc.relation.referencesen9. Cacace, C., Elia, L., Elia, V., Napoli, E., & Niccoli, M. (2009). Conductometric and pHmetric titrations of Extremely Diluted Solutions using HCl solutions as titrant. Journal of Molecular Liquids, 146(3), 122–126. doi:10.1016/j.molliq.2009.02.012
dc.relation.referencesen10. Elia, V., Napoli, E., & Niccoli, M. (2009). A molecular model of interaction between extremely diluted solutions and NaOH solutions used as titrant. Journal of Molecular Liquids, 148(1), 45–50. doi:10.1016/j.molliq.2009.06.005
dc.relation.referencesen11. Roger, G. M., Durand-Vidal, S., Bernard, O., Mériguet, G., Altmann, S., & Turq, P. (2010). Characterization of humic substances and polyacrylic acid: A high precision conductimetry study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 356(1–3), 51–57. doi:10.1016/j.colsurfa.2009.12.029
dc.relation.referencesen12. Ghorbani, R., Ghasemi, J., & Abdollahi, B. (2006). Conductometric simultaneous determination of acetic acid, monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares. Journal of Hazardous Materials, 131(1–3), 13–18. doi:10.1016/j.jhazmat.2005.09.016
dc.relation.referencesen13. Coelho, L. H., & Gutz, I. G. (2006). Trace analysis of acids and bases by conductometric titration with multiparametric non-linear regression. Talanta, 69(1), 204–209. doi:10.1016/j.talanta.2005.09.025
dc.relation.referencesen14. Riggle, J. (2002). Conductometric characterization of dissolved humic materials. Talanta, 57(3), 519–526. doi:10.1016/s0039-9140(02)00052-8
dc.relation.referencesen15. Riggle, J., & Wandruszka, R. V. (2004). Dynamic conductivity measurements in humic and fulvic acid solutions. Talanta, 62(1), 103–108. doi:10.1016/s0039-9140(03)00404-1
dc.relation.referencesen16. Vostokov, V. M. (2009). Kriterii instrumental’nogo kislotno-osnovnogo titrovaniya rastvorov elektrolitov. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, No. 3, 100–106. Retrieved from https://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov.
dc.relation.referencesen17. Fras, L., Laine, J., Stenius, P., Stana-Kleinschek, K., Ribitsch, V., & Dolesek, V. (2004). Determination of dissociable groups in natural and regenerated cellulose fibers by different titration methods. Journal of Applied Polymer Science, 92(5), 3186–3195. doi:10.1002/app.20294
dc.relation.referencesen18. Kowalczyk-Marzec, A., Kurzawa, M., Szydlowska-Czerniak, A., & Szlyk, E. (2002). Conductometric Determination of Phenothiazine Derivatives by Precipitation Titration. Chemia Analityczna (Warsaw), 47, 613–618. Retrieved from http://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf
dc.relation.referencesen19. Kulichenko, S. A., & Fesenko, S. A. (2002). Titrimetric Determination of Furosemide Using Aqueous–Micellar Solutions of Surfactants. Journal of Analytical Chemistry, 57(3), 231–234. doi:10.1023/a:1014444332118
dc.relation.referencesen20. Wang, Z., Shirley, M. D., Meikle, S. T., Whitby, R. L., & Mikhalovsky, S. V. (2009). The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 47(1), 73–79. doi:10.1016/j.carbon.2008.09.038
dc.relation.referencesen21. Goertzen, S. L., Thöriault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252–1261. doi:10.1016/j. carbon.2009.11.050
dc.relation.referencesen22. Oickle, A. M., Goertzen, S. L., Hopper, K. R., Abdalla, Y. O., & Andreas, H. A. (2010). Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant. Carbon, 48(12), 3313–3322. doi:10.1016/j.carbon.2010.05.004
dc.relation.referencesen23. Schönherr, J., Buchheim, J. R., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part I): Practical Aspects for Achieving a High Precision in Quantifying Oxygen-Containing Surface Groups on Carbon Materials. C(Journal of Carbon Research), 4(2), 21. 1–13. doi:10.3390/P.4020021
dc.relation.referencesen24. Schönherr, J., Buchheim, J., Scholz, P., & Adelhelm, P. (2018). Boehm Titration Revisited (Part II): A Comparison of Boehm Titration with Other Analytical Techniques on the Quantification of Oxygen-Containing Surface Groups for a Variety of Carbon Materials. C(Journal of Carbon Research), 4(2), 22. 1–16. doi:10.3390/P.4020022
dc.relation.referencesen25. Porshnev, S. V, & Belenkova, I V. (2005). Chislennyye metody na baze Mathcad. Sankt-Peterburg: BKHV-Peterburg.
dc.relation.urihttps://www.scribd.com/document/273071782/D2073-Total-Primary-SecondaryAnd-Tertiary-Amine-Values-Of
dc.relation.urihttps://www.astm.org/Standards/D2074.htm
dc.relation.urihttps://cyberleninka.ru/article/n/kriterii-instrumentalnogokislotno-osnovnogo-titrovaniya-rastvorov-elektrolitov
dc.relation.urihttp://beta.chem.uw.edu.pl/chemanal/PDFs/2002/CHAN2002V47P00613.pdf
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectамінне число
dc.subjectкислотне число
dc.subjectпотенціометрія
dc.subjectкондуктометрія
dc.subjectамідування жирних кислот
dc.subjectamine number
dc.subjectacid number
dc.subjectpotentiometry
dc.subjectconductometry
dc.subjectamidation of fatty acids
dc.titleПотенціометричне та кондуктометричне визначення амінного та кислотного чисел реакційної суміші амідування жирних кислот
dc.title.alternativePotentiometric and conductometric determination of amine and acid numbers of reaction mixture from fatty acid amidation
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v4n1_Poliuzhyn_I_P-Potentiometric_and_conductometric_8-18.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v4n1_Poliuzhyn_I_P-Potentiometric_and_conductometric_8-18__COVER.png
Size:
466.03 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: