Investigation of the process of fluoride ions adsorption by natural sorbents

dc.citation.epage187
dc.citation.issue3
dc.citation.spage181
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorSabadash, Vira
dc.contributor.authorLiuta, Oksana
dc.contributor.authorGumnitsky, Jaroslaw
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-05-04T07:14:00Z
dc.date.available2023-05-04T07:14:00Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractA detailed analysis of literature sources on the content of fluorides in the environment, methods of conditioning and defluoridation of water was held. The mechanism of interaction of fluorides with zeolite in the process of adsorption treatment of wastewaters and domestic waters was clarified. It was first established that in the process of adsorption there is the formation of magnesium fluoride compounds due to the binding of cations extracted from the zeolite by the mechanism of ion exchange. The mechanism of chemisorption of fluoride ions by the formation of insoluble CaF2 was also proved. According to the results of experimental research, a technological scheme has been developed, which provides the preliminary treatment of fluoride ions in the form of complexes with aluminium. In order to prevent the permeation of aluminium fluoride into the treated water, a stage of adsorption water purification was proposed. Calculations of the amount of reagent necessary to ensure the required degree of purification of water from fluoride ions were done. The statistical parameters of the process and the significance of the obtained results were calculated. The coefficient of determination of experimental data was 0.87…0.99, the standard deviation was 0.017…0.026.
dc.format.extent181-187
dc.format.pages7
dc.identifier.citationSabadash V. Investigation of the process of fluoride ions adsorption by natural sorbents / Vira Sabadash, Oksana Liuta, Jaroslaw Gumnitsky // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 181–187.
dc.identifier.citationenSabadash V. Investigation of the process of fluoride ions adsorption by natural sorbents / Vira Sabadash, Oksana Liuta, Jaroslaw Gumnitsky // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 181–187.
dc.identifier.doidoi.org/10.23939/ep2021.03.181
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/58995
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnvironmental Problems, 3 (6), 2021
dc.relation.referencesBazrafshan, E., Balarak, D., Panahi, A. H., Kamani, H., &
dc.relation.referencesMahvi, A. H. (2016). Fluoride removal from aqueous
dc.relation.referencessolutions by cupricoxide nanoparticles. Fluoride, 49(3), 233.
dc.relation.referencesBorgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H.
dc.relation.references(2020). Rapid and extremely high adsorption performance
dc.relation.referencesof porous MgO nanostructures for fluoride removal from
dc.relation.referenceswater. Journal of Molecular Liquids, 305, 112799. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.referencesÇengeloğlu, Y., Kır, E., & Ersöz, M. (2002). Removal of
dc.relation.referencesfluoride from aqueous solution by using red mud.
dc.relation.referencesSeparation and purification Technology, 28(1), 81–86. doi:
dc.relation.referenceshttps://doi.org/10.1016/S1383-5866(02)00016-3
dc.relation.referencesHe, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019).
dc.relation.referencesEnhanced fluoride removal from water by rare earth (La
dc.relation.referencesand Ce) modified alumina: Adsorption isotherms, kinetics,
dc.relation.referencesthermodynamics and mechanism. Science of the total
dc.relation.referencesenvironment, 688, 184–198. doi: https://doi.org/10.1016/j.scitotenv.2019.06.175
dc.relation.referencesHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesStatics and kinetics of albumin adsorption by natural
dc.relation.referenceszeolite. Chemistry & Chemical Technology, 13(1), 95–100.
dc.relation.referencesdoi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesKang, D., Yu, X., & Ge, M. (2017). Morphology-dependent
dc.relation.referencesproperties and adsorption performance of CeO2 for fluoride
dc.relation.referencesremoval. Chemical Engineering Journal, 330, 36–43. doi:
dc.relation.referenceshttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.referencesMahmoudi, M. M., Nasseri, S., Mahvi, A. H., Dargahi, A.,
dc.relation.referencesKhubestani, M. S., & Salari, M. (2019). Fluoride removal
dc.relation.referencesfrom aqueous solution by acid-treated clinoptilolite: isotherm
dc.relation.referencesand kinetic study. Desalination and Water Treatment, 146, 333–340. doi: https://doi.org/10.5004/dwt.2019.23625
dc.relation.referencesMaity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P.,
dc.relation.referencesBundschuh, J., & Chen, C. Y. (2018). Removal of fluoride
dc.relation.referencesfrom water through bacterial-surfactin mediated novel
dc.relation.referenceshydroxyapatite nanoparticle and its efficiency assessment:
dc.relation.referencesadsorption isotherm, adsorption kinetic and adsorption
dc.relation.referencesthermodynamics. Environmental nanotechnology, monitoring
dc.relation.references& management, 9, 18–28. doi: https://doi.org/10.1016/j.enmm.2017.11.001
dc.relation.referencesSaha, S. (1993). Treatment of aqueous effluent for fluoride
dc.relation.referencesremoval. Water Research, 27(8), 1347–1350. doi:
dc.relation.referenceshttps://doi.org/10.1016/0043-1354(93)90222-4
dc.relation.referencesSabadash, V. V. (2019). Theoretical bases of sorption processes
dc.relation.referenceson natural and synthetic sorbents. (Dysertatsiia doktora
dc.relation.referencestekhnichnykh nauk). Lviv Polytechnic National University,
dc.relation.referencesLviv.
dc.relation.referencesSabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L.
dc.relation.references(2017). Concurrent sorption of copper and chromium
dc.relation.referencescations by natural zeolite. Environmental problems, 2(1), 33–36.
dc.relation.referencesSabadash V. (2013). Innovative development trends in modern
dc.relation.referencestechnical scienses: problems and prospects: Adsorptive
dc.relation.referencesremoval of fluorides from waste water. B & M Publishing,
dc.relation.referencesSan Francisco, California, USA.
dc.relation.referencesSrivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C.
dc.relation.references(2013). Application of a new adsorbent for fluoride removal
dc.relation.referencesfrom aqueous solutions. Journal of Hazardous materials, 263, 342–352.
dc.relation.referencesdoi: https://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.referencesTor, A. (2006). Removal of fluoride from an aqueous solution
dc.relation.referencesby using montmorillonite. Desalination, 201(1-3), 267–276. doi: https://doi.org/10.1016/j.desal.2006.06.003
dc.relation.referencesenBazrafshan, E., Balarak, D., Panahi, A. H., Kamani, H., &
dc.relation.referencesenMahvi, A. H. (2016). Fluoride removal from aqueous
dc.relation.referencesensolutions by cupricoxide nanoparticles. Fluoride, 49(3), 233.
dc.relation.referencesenBorgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H.
dc.relation.referencesen(2020). Rapid and extremely high adsorption performance
dc.relation.referencesenof porous MgO nanostructures for fluoride removal from
dc.relation.referencesenwater. Journal of Molecular Liquids, 305, 112799. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.referencesenÇengeloğlu, Y., Kır, E., & Ersöz, M. (2002). Removal of
dc.relation.referencesenfluoride from aqueous solution by using red mud.
dc.relation.referencesenSeparation and purification Technology, 28(1), 81–86. doi:
dc.relation.referencesenhttps://doi.org/10.1016/S1383-5866(02)00016-3
dc.relation.referencesenHe, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019).
dc.relation.referencesenEnhanced fluoride removal from water by rare earth (La
dc.relation.referencesenand Ce) modified alumina: Adsorption isotherms, kinetics,
dc.relation.referencesenthermodynamics and mechanism. Science of the total
dc.relation.referencesenenvironment, 688, 184–198. doi: https://doi.org/10.1016/j.scitotenv.2019.06.175
dc.relation.referencesenHyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019).
dc.relation.referencesenStatics and kinetics of albumin adsorption by natural
dc.relation.referencesenzeolite. Chemistry & Chemical Technology, 13(1), 95–100.
dc.relation.referencesendoi: https://doi.org/10.23939/chcht13.01.095
dc.relation.referencesenKang, D., Yu, X., & Ge, M. (2017). Morphology-dependent
dc.relation.referencesenproperties and adsorption performance of CeO2 for fluoride
dc.relation.referencesenremoval. Chemical Engineering Journal, 330, 36–43. doi:
dc.relation.referencesenhttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.referencesenMahmoudi, M. M., Nasseri, S., Mahvi, A. H., Dargahi, A.,
dc.relation.referencesenKhubestani, M. S., & Salari, M. (2019). Fluoride removal
dc.relation.referencesenfrom aqueous solution by acid-treated clinoptilolite: isotherm
dc.relation.referencesenand kinetic study. Desalination and Water Treatment, 146, 333–340. doi: https://doi.org/10.5004/dwt.2019.23625
dc.relation.referencesenMaity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P.,
dc.relation.referencesenBundschuh, J., & Chen, C. Y. (2018). Removal of fluoride
dc.relation.referencesenfrom water through bacterial-surfactin mediated novel
dc.relation.referencesenhydroxyapatite nanoparticle and its efficiency assessment:
dc.relation.referencesenadsorption isotherm, adsorption kinetic and adsorption
dc.relation.referencesenthermodynamics. Environmental nanotechnology, monitoring
dc.relation.referencesen& management, 9, 18–28. doi: https://doi.org/10.1016/j.enmm.2017.11.001
dc.relation.referencesenSaha, S. (1993). Treatment of aqueous effluent for fluoride
dc.relation.referencesenremoval. Water Research, 27(8), 1347–1350. doi:
dc.relation.referencesenhttps://doi.org/10.1016/0043-1354(93)90222-4
dc.relation.referencesenSabadash, V. V. (2019). Theoretical bases of sorption processes
dc.relation.referencesenon natural and synthetic sorbents. (Dysertatsiia doktora
dc.relation.referencesentekhnichnykh nauk). Lviv Polytechnic National University,
dc.relation.referencesenLviv.
dc.relation.referencesenSabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L.
dc.relation.referencesen(2017). Concurrent sorption of copper and chromium
dc.relation.referencesencations by natural zeolite. Environmental problems, 2(1), 33–36.
dc.relation.referencesenSabadash V. (2013). Innovative development trends in modern
dc.relation.referencesentechnical scienses: problems and prospects: Adsorptive
dc.relation.referencesenremoval of fluorides from waste water. B & M Publishing,
dc.relation.referencesenSan Francisco, California, USA.
dc.relation.referencesenSrivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C.
dc.relation.referencesen(2013). Application of a new adsorbent for fluoride removal
dc.relation.referencesenfrom aqueous solutions. Journal of Hazardous materials, 263, 342–352.
dc.relation.referencesendoi: https://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.referencesenTor, A. (2006). Removal of fluoride from an aqueous solution
dc.relation.referencesenby using montmorillonite. Desalination, 201(1-3), 267–276. doi: https://doi.org/10.1016/j.desal.2006.06.003
dc.relation.urihttps://doi.org/10.1016/j.molliq.2020.112799
dc.relation.urihttps://doi.org/10.1016/S1383-5866(02)00016-3
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2019.06.175
dc.relation.urihttps://doi.org/10.23939/chcht13.01.095
dc.relation.urihttps://doi.org/10.1016/j.cej.2017.07.140
dc.relation.urihttps://doi.org/10.5004/dwt.2019.23625
dc.relation.urihttps://doi.org/10.1016/j.enmm.2017.11.001
dc.relation.urihttps://doi.org/10.1016/0043-1354(93)90222-4
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2013.04.017
dc.relation.urihttps://doi.org/10.1016/j.desal.2006.06.003
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.rights.holder© Sabadash V., Liuta O., Gumnitsky J., 2021
dc.subjectadsorption
dc.subjectfluorides
dc.subjectsorbents
dc.subjectwastewaters
dc.subjectreagent treatment
dc.titleInvestigation of the process of fluoride ions adsorption by natural sorbents
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2021v6n3_Sabadash_V-Investigation_of_the_process_181-187.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2021v6n3_Sabadash_V-Investigation_of_the_process_181-187__COVER.png
Size:
409.27 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: