Investigation of the process of fluoride ions adsorption by natural sorbents
dc.citation.epage | 187 | |
dc.citation.issue | 3 | |
dc.citation.spage | 181 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Sabadash, Vira | |
dc.contributor.author | Liuta, Oksana | |
dc.contributor.author | Gumnitsky, Jaroslaw | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-05-04T07:14:00Z | |
dc.date.available | 2023-05-04T07:14:00Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | A detailed analysis of literature sources on the content of fluorides in the environment, methods of conditioning and defluoridation of water was held. The mechanism of interaction of fluorides with zeolite in the process of adsorption treatment of wastewaters and domestic waters was clarified. It was first established that in the process of adsorption there is the formation of magnesium fluoride compounds due to the binding of cations extracted from the zeolite by the mechanism of ion exchange. The mechanism of chemisorption of fluoride ions by the formation of insoluble CaF2 was also proved. According to the results of experimental research, a technological scheme has been developed, which provides the preliminary treatment of fluoride ions in the form of complexes with aluminium. In order to prevent the permeation of aluminium fluoride into the treated water, a stage of adsorption water purification was proposed. Calculations of the amount of reagent necessary to ensure the required degree of purification of water from fluoride ions were done. The statistical parameters of the process and the significance of the obtained results were calculated. The coefficient of determination of experimental data was 0.87…0.99, the standard deviation was 0.017…0.026. | |
dc.format.extent | 181-187 | |
dc.format.pages | 7 | |
dc.identifier.citation | Sabadash V. Investigation of the process of fluoride ions adsorption by natural sorbents / Vira Sabadash, Oksana Liuta, Jaroslaw Gumnitsky // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 181–187. | |
dc.identifier.citationen | Sabadash V. Investigation of the process of fluoride ions adsorption by natural sorbents / Vira Sabadash, Oksana Liuta, Jaroslaw Gumnitsky // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 6. — No 3. — P. 181–187. | |
dc.identifier.doi | doi.org/10.23939/ep2021.03.181 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/58995 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Environmental Problems, 3 (6), 2021 | |
dc.relation.references | Bazrafshan, E., Balarak, D., Panahi, A. H., Kamani, H., & | |
dc.relation.references | Mahvi, A. H. (2016). Fluoride removal from aqueous | |
dc.relation.references | solutions by cupricoxide nanoparticles. Fluoride, 49(3), 233. | |
dc.relation.references | Borgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H. | |
dc.relation.references | (2020). Rapid and extremely high adsorption performance | |
dc.relation.references | of porous MgO nanostructures for fluoride removal from | |
dc.relation.references | water. Journal of Molecular Liquids, 305, 112799. doi: | |
dc.relation.references | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.references | Çengeloğlu, Y., Kır, E., & Ersöz, M. (2002). Removal of | |
dc.relation.references | fluoride from aqueous solution by using red mud. | |
dc.relation.references | Separation and purification Technology, 28(1), 81–86. doi: | |
dc.relation.references | https://doi.org/10.1016/S1383-5866(02)00016-3 | |
dc.relation.references | He, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019). | |
dc.relation.references | Enhanced fluoride removal from water by rare earth (La | |
dc.relation.references | and Ce) modified alumina: Adsorption isotherms, kinetics, | |
dc.relation.references | thermodynamics and mechanism. Science of the total | |
dc.relation.references | environment, 688, 184–198. doi: https://doi.org/10.1016/j.scitotenv.2019.06.175 | |
dc.relation.references | Hyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). | |
dc.relation.references | Statics and kinetics of albumin adsorption by natural | |
dc.relation.references | zeolite. Chemistry & Chemical Technology, 13(1), 95–100. | |
dc.relation.references | doi: https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.references | Kang, D., Yu, X., & Ge, M. (2017). Morphology-dependent | |
dc.relation.references | properties and adsorption performance of CeO2 for fluoride | |
dc.relation.references | removal. Chemical Engineering Journal, 330, 36–43. doi: | |
dc.relation.references | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.references | Mahmoudi, M. M., Nasseri, S., Mahvi, A. H., Dargahi, A., | |
dc.relation.references | Khubestani, M. S., & Salari, M. (2019). Fluoride removal | |
dc.relation.references | from aqueous solution by acid-treated clinoptilolite: isotherm | |
dc.relation.references | and kinetic study. Desalination and Water Treatment, 146, 333–340. doi: https://doi.org/10.5004/dwt.2019.23625 | |
dc.relation.references | Maity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P., | |
dc.relation.references | Bundschuh, J., & Chen, C. Y. (2018). Removal of fluoride | |
dc.relation.references | from water through bacterial-surfactin mediated novel | |
dc.relation.references | hydroxyapatite nanoparticle and its efficiency assessment: | |
dc.relation.references | adsorption isotherm, adsorption kinetic and adsorption | |
dc.relation.references | thermodynamics. Environmental nanotechnology, monitoring | |
dc.relation.references | & management, 9, 18–28. doi: https://doi.org/10.1016/j.enmm.2017.11.001 | |
dc.relation.references | Saha, S. (1993). Treatment of aqueous effluent for fluoride | |
dc.relation.references | removal. Water Research, 27(8), 1347–1350. doi: | |
dc.relation.references | https://doi.org/10.1016/0043-1354(93)90222-4 | |
dc.relation.references | Sabadash, V. V. (2019). Theoretical bases of sorption processes | |
dc.relation.references | on natural and synthetic sorbents. (Dysertatsiia doktora | |
dc.relation.references | tekhnichnykh nauk). Lviv Polytechnic National University, | |
dc.relation.references | Lviv. | |
dc.relation.references | Sabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L. | |
dc.relation.references | (2017). Concurrent sorption of copper and chromium | |
dc.relation.references | cations by natural zeolite. Environmental problems, 2(1), 33–36. | |
dc.relation.references | Sabadash V. (2013). Innovative development trends in modern | |
dc.relation.references | technical scienses: problems and prospects: Adsorptive | |
dc.relation.references | removal of fluorides from waste water. B & M Publishing, | |
dc.relation.references | San Francisco, California, USA. | |
dc.relation.references | Srivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C. | |
dc.relation.references | (2013). Application of a new adsorbent for fluoride removal | |
dc.relation.references | from aqueous solutions. Journal of Hazardous materials, 263, 342–352. | |
dc.relation.references | doi: https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.references | Tor, A. (2006). Removal of fluoride from an aqueous solution | |
dc.relation.references | by using montmorillonite. Desalination, 201(1-3), 267–276. doi: https://doi.org/10.1016/j.desal.2006.06.003 | |
dc.relation.referencesen | Bazrafshan, E., Balarak, D., Panahi, A. H., Kamani, H., & | |
dc.relation.referencesen | Mahvi, A. H. (2016). Fluoride removal from aqueous | |
dc.relation.referencesen | solutions by cupricoxide nanoparticles. Fluoride, 49(3), 233. | |
dc.relation.referencesen | Borgohain, X., Boruah, A., Sarma, G. K., & Rashid, M. H. | |
dc.relation.referencesen | (2020). Rapid and extremely high adsorption performance | |
dc.relation.referencesen | of porous MgO nanostructures for fluoride removal from | |
dc.relation.referencesen | water. Journal of Molecular Liquids, 305, 112799. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.referencesen | Çengeloğlu, Y., Kır, E., & Ersöz, M. (2002). Removal of | |
dc.relation.referencesen | fluoride from aqueous solution by using red mud. | |
dc.relation.referencesen | Separation and purification Technology, 28(1), 81–86. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/S1383-5866(02)00016-3 | |
dc.relation.referencesen | He, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019). | |
dc.relation.referencesen | Enhanced fluoride removal from water by rare earth (La | |
dc.relation.referencesen | and Ce) modified alumina: Adsorption isotherms, kinetics, | |
dc.relation.referencesen | thermodynamics and mechanism. Science of the total | |
dc.relation.referencesen | environment, 688, 184–198. doi: https://doi.org/10.1016/j.scitotenv.2019.06.175 | |
dc.relation.referencesen | Hyvlud, A., Sabadash, V., Gumnitsky, J., & Ripak, N. (2019). | |
dc.relation.referencesen | Statics and kinetics of albumin adsorption by natural | |
dc.relation.referencesen | zeolite. Chemistry & Chemical Technology, 13(1), 95–100. | |
dc.relation.referencesen | doi: https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.referencesen | Kang, D., Yu, X., & Ge, M. (2017). Morphology-dependent | |
dc.relation.referencesen | properties and adsorption performance of CeO2 for fluoride | |
dc.relation.referencesen | removal. Chemical Engineering Journal, 330, 36–43. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.referencesen | Mahmoudi, M. M., Nasseri, S., Mahvi, A. H., Dargahi, A., | |
dc.relation.referencesen | Khubestani, M. S., & Salari, M. (2019). Fluoride removal | |
dc.relation.referencesen | from aqueous solution by acid-treated clinoptilolite: isotherm | |
dc.relation.referencesen | and kinetic study. Desalination and Water Treatment, 146, 333–340. doi: https://doi.org/10.5004/dwt.2019.23625 | |
dc.relation.referencesen | Maity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P., | |
dc.relation.referencesen | Bundschuh, J., & Chen, C. Y. (2018). Removal of fluoride | |
dc.relation.referencesen | from water through bacterial-surfactin mediated novel | |
dc.relation.referencesen | hydroxyapatite nanoparticle and its efficiency assessment: | |
dc.relation.referencesen | adsorption isotherm, adsorption kinetic and adsorption | |
dc.relation.referencesen | thermodynamics. Environmental nanotechnology, monitoring | |
dc.relation.referencesen | & management, 9, 18–28. doi: https://doi.org/10.1016/j.enmm.2017.11.001 | |
dc.relation.referencesen | Saha, S. (1993). Treatment of aqueous effluent for fluoride | |
dc.relation.referencesen | removal. Water Research, 27(8), 1347–1350. doi: | |
dc.relation.referencesen | https://doi.org/10.1016/0043-1354(93)90222-4 | |
dc.relation.referencesen | Sabadash, V. V. (2019). Theoretical bases of sorption processes | |
dc.relation.referencesen | on natural and synthetic sorbents. (Dysertatsiia doktora | |
dc.relation.referencesen | tekhnichnykh nauk). Lviv Polytechnic National University, | |
dc.relation.referencesen | Lviv. | |
dc.relation.referencesen | Sabadash, V., Gumnytskyy, J., Mylianyk, O., & Romaniuk, L. | |
dc.relation.referencesen | (2017). Concurrent sorption of copper and chromium | |
dc.relation.referencesen | cations by natural zeolite. Environmental problems, 2(1), 33–36. | |
dc.relation.referencesen | Sabadash V. (2013). Innovative development trends in modern | |
dc.relation.referencesen | technical scienses: problems and prospects: Adsorptive | |
dc.relation.referencesen | removal of fluorides from waste water. B & M Publishing, | |
dc.relation.referencesen | San Francisco, California, USA. | |
dc.relation.referencesen | Srivastav, A. L., Singh, P. K., Srivastava, V., & Sharma, Y. C. | |
dc.relation.referencesen | (2013). Application of a new adsorbent for fluoride removal | |
dc.relation.referencesen | from aqueous solutions. Journal of Hazardous materials, 263, 342–352. | |
dc.relation.referencesen | doi: https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.referencesen | Tor, A. (2006). Removal of fluoride from an aqueous solution | |
dc.relation.referencesen | by using montmorillonite. Desalination, 201(1-3), 267–276. doi: https://doi.org/10.1016/j.desal.2006.06.003 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2020.112799 | |
dc.relation.uri | https://doi.org/10.1016/S1383-5866(02)00016-3 | |
dc.relation.uri | https://doi.org/10.1016/j.scitotenv.2019.06.175 | |
dc.relation.uri | https://doi.org/10.23939/chcht13.01.095 | |
dc.relation.uri | https://doi.org/10.1016/j.cej.2017.07.140 | |
dc.relation.uri | https://doi.org/10.5004/dwt.2019.23625 | |
dc.relation.uri | https://doi.org/10.1016/j.enmm.2017.11.001 | |
dc.relation.uri | https://doi.org/10.1016/0043-1354(93)90222-4 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2013.04.017 | |
dc.relation.uri | https://doi.org/10.1016/j.desal.2006.06.003 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.rights.holder | © Sabadash V., Liuta O., Gumnitsky J., 2021 | |
dc.subject | adsorption | |
dc.subject | fluorides | |
dc.subject | sorbents | |
dc.subject | wastewaters | |
dc.subject | reagent treatment | |
dc.title | Investigation of the process of fluoride ions adsorption by natural sorbents | |
dc.type | Article |
Files
License bundle
1 - 1 of 1