The formulas for sum of products of sequences associated with the metallic means

dc.citation.epage78
dc.citation.issue1
dc.citation.journalTitleКомп'ютерні системи проектування. Теорія і практика
dc.citation.spage73
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, П.
dc.contributor.authorНестор, Н.
dc.contributor.authorKosobutskyy, P.
dc.contributor.authorNestor, N.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-03-08T07:43:56Z
dc.date.available2023-03-08T07:43:56Z
dc.date.created2020-11-20
dc.date.issued2020-11-20
dc.description.abstractУ цій роботі досліджено закономірності згортки послідовностей сум чисел Фібоначчі {Fn}, породжених металевими середніми, та суми добутків двох статистично незалежних послідовностей {Fn} та Jn=j∙sin(0.5π(n-j)). Показано, що відомі закриті форми сум для згортки1i innjF F=å -та добутків2)1(cos11-- på-=jє подібними. Така увага до вивчення згортки двох послідовностей дискретних даних пов'язана із застосуванням цього методу для статистичної обробки сигналів. Ця задача передбачає обчислення скінченних сум як дискретних аналогів певних інтегралів. Така проблема вважається вирішеною, якщо формула суми виражається у закритому вигляді як функція її членів та їх кількості.
dc.description.abstractIn this paper, the regularities of convolution of sequences c of Fibonacci numbers {Fn} generated by metallic means and the sum of products of two statistically independent sequences {Fi} and Jn=j∙sin(0.5π(n-j)) are investigated. I is shown that the known closed forms of sums for convolution 1i innjF F=å -and product 2)1(cos11-- på-=jnFjjnjare similar. Attention to the study of the convolution of two sequences of discrete data is associated with the use of this method for statistical signal processing. This problem involves calculating finite sums as discrete analogs of definite integrals. Such a problem is considered solved if the formula for the sum is expressed in a closed form as a function of its members and their number.
dc.format.extent73-78
dc.format.pages6
dc.identifier.citationKosobutskyy P. The formulas for sum of products of sequences associated with the metallic means / P. Kosobutskyy, N. Nestor // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 73–78.
dc.identifier.citationenKosobutskyy P., Nestor N. (2020) The formulas for sum of products of sequences associated with the metallic means. Computer Design Systems. Theory and Practice (Lviv), vol. 2, no 1, pp. 73-78.
dc.identifier.doihttps://doi.org/ 10.23939/cds2020.01.073
dc.identifier.issn2707-6784
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57560
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи проектування. Теорія і практика, 1 (2), 2020
dc.relation.ispartofComputer Design Systems. Theory and Practice, 1 (2), 2020
dc.relation.references1. Proakis J., Manolakis D. Digital Signal Processing. Principles, by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey, 1996, Algorithm, and Applications.WEB-resource: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf.
dc.relation.references2. T.Kim, D. Dolgy, D.Kim, et.al. Convolved Fibonacci numbers and their applications. ARS Combinatoria, 135 (2017 ): 228; arXiv:1607.06380 [math.NT] (or arXiv:1607.06380v1 [math.NT] for this version)
dc.relation.references3. T. Szakács: Convolution of second-order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) 205–216.
dc.relation.references4. Chen Z., Qi L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence Symmetry (2019), 11, 788–798.
dc.relation.references5. Moree P. Convoluted Convolved Fibonacci Numbers. Journal of Integer Sequences, Vol. 7 (2004).
dc.relation.references6. Vera W. De Spinadel. The Family of Metallic Means. (2014), http://www.mi.sanu.ac.rs/vismath/spinadel/].
dc.relation.references7. Zhang W.: Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly 35 (3) (1997) 225–229.
dc.relation.references8. Komatsu T., Masáková Z., Pelantová E. Higher-order identities for Fibonacci numbers, Fibonacci Quart. 52 (2014), 150–163.
dc.relation.references9. Pierre J. W. A novel method for calculating the convolution sum of two finite-length sequences. IEEE Transactions on Education, vol. 39, issue 1 (1996), 77–80.
dc.relation.referencesen1. Proakis J., Manolakis D. Digital Signal Processing. Principles, by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey, 1996, Algorithm, and Applications.WEB-resource: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf.
dc.relation.referencesen2. T.Kim, D. Dolgy, D.Kim, et.al. Convolved Fibonacci numbers and their applications. ARS Combinatoria, 135 (2017 ): 228; arXiv:1607.06380 [math.NT] (or arXiv:1607.06380v1 [math.NT] for this version)
dc.relation.referencesen3. T. Szakács: Convolution of second-order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) 205–216.
dc.relation.referencesen4. Chen Z., Qi L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence Symmetry (2019), 11, 788–798.
dc.relation.referencesen5. Moree P. Convoluted Convolved Fibonacci Numbers. Journal of Integer Sequences, Vol. 7 (2004).
dc.relation.referencesen6. Vera W. De Spinadel. The Family of Metallic Means. (2014), http://www.mi.sanu.ac.rs/vismath/spinadel/].
dc.relation.referencesen7. Zhang W., Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly 35 (3) (1997) 225–229.
dc.relation.referencesen8. Komatsu T., Masáková Z., Pelantová E. Higher-order identities for Fibonacci numbers, Fibonacci Quart. 52 (2014), 150–163.
dc.relation.referencesen9. Pierre J. W. A novel method for calculating the convolution sum of two finite-length sequences. IEEE Transactions on Education, vol. 39, issue 1 (1996), 77–80.
dc.relation.urihttps://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf
dc.relation.urihttp://www.mi.sanu.ac.rs/vismath/spinadel/
dc.rights.holder© Національний університет „Львівська політехніка“, 2020
dc.rights.holder© Kosobutskyy P., Nestor N., 2020
dc.subjectЗолотий переріз
dc.subjectметалеві середні
dc.subjectпослідовності Фібоначчі
dc.subjectкорені квадратного рівняння
dc.subjectGolden ratio
dc.subjectmetallic meаns
dc.subjectFibonacci sequences
dc.subjectthe roots of the quadratic equation
dc.titleThe formulas for sum of products of sequences associated with the metallic means
dc.title.alternativeФормули сум добутків послідовностей, зв’язаних з металічними середніми
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2020v2n1_Kosobutskyy_P-The_formulas_for_sum_73-78.pdf
Size:
485.59 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: