The formulas for sum of products of sequences associated with the metallic means
dc.citation.epage | 78 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп'ютерні системи проектування. Теорія і практика | |
dc.citation.spage | 73 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кособуцький, П. | |
dc.contributor.author | Нестор, Н. | |
dc.contributor.author | Kosobutskyy, P. | |
dc.contributor.author | Nestor, N. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-03-08T07:43:56Z | |
dc.date.available | 2023-03-08T07:43:56Z | |
dc.date.created | 2020-11-20 | |
dc.date.issued | 2020-11-20 | |
dc.description.abstract | У цій роботі досліджено закономірності згортки послідовностей сум чисел Фібоначчі {Fn}, породжених металевими середніми, та суми добутків двох статистично незалежних послідовностей {Fn} та Jn=j∙sin(0.5π(n-j)). Показано, що відомі закриті форми сум для згортки1i innjF F=å -та добутків2)1(cos11-- på-=jє подібними. Така увага до вивчення згортки двох послідовностей дискретних даних пов'язана із застосуванням цього методу для статистичної обробки сигналів. Ця задача передбачає обчислення скінченних сум як дискретних аналогів певних інтегралів. Така проблема вважається вирішеною, якщо формула суми виражається у закритому вигляді як функція її членів та їх кількості. | |
dc.description.abstract | In this paper, the regularities of convolution of sequences c of Fibonacci numbers {Fn} generated by metallic means and the sum of products of two statistically independent sequences {Fi} and Jn=j∙sin(0.5π(n-j)) are investigated. I is shown that the known closed forms of sums for convolution 1i innjF F=å -and product 2)1(cos11-- på-=jnFjjnjare similar. Attention to the study of the convolution of two sequences of discrete data is associated with the use of this method for statistical signal processing. This problem involves calculating finite sums as discrete analogs of definite integrals. Such a problem is considered solved if the formula for the sum is expressed in a closed form as a function of its members and their number. | |
dc.format.extent | 73-78 | |
dc.format.pages | 6 | |
dc.identifier.citation | Kosobutskyy P. The formulas for sum of products of sequences associated with the metallic means / P. Kosobutskyy, N. Nestor // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 1. — P. 73–78. | |
dc.identifier.citationen | Kosobutskyy P., Nestor N. (2020) The formulas for sum of products of sequences associated with the metallic means. Computer Design Systems. Theory and Practice (Lviv), vol. 2, no 1, pp. 73-78. | |
dc.identifier.doi | https://doi.org/ 10.23939/cds2020.01.073 | |
dc.identifier.issn | 2707-6784 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/57560 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп'ютерні системи проектування. Теорія і практика, 1 (2), 2020 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (2), 2020 | |
dc.relation.references | 1. Proakis J., Manolakis D. Digital Signal Processing. Principles, by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey, 1996, Algorithm, and Applications.WEB-resource: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf. | |
dc.relation.references | 2. T.Kim, D. Dolgy, D.Kim, et.al. Convolved Fibonacci numbers and their applications. ARS Combinatoria, 135 (2017 ): 228; arXiv:1607.06380 [math.NT] (or arXiv:1607.06380v1 [math.NT] for this version) | |
dc.relation.references | 3. T. Szakács: Convolution of second-order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) 205–216. | |
dc.relation.references | 4. Chen Z., Qi L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence Symmetry (2019), 11, 788–798. | |
dc.relation.references | 5. Moree P. Convoluted Convolved Fibonacci Numbers. Journal of Integer Sequences, Vol. 7 (2004). | |
dc.relation.references | 6. Vera W. De Spinadel. The Family of Metallic Means. (2014), http://www.mi.sanu.ac.rs/vismath/spinadel/]. | |
dc.relation.references | 7. Zhang W.: Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly 35 (3) (1997) 225–229. | |
dc.relation.references | 8. Komatsu T., Masáková Z., Pelantová E. Higher-order identities for Fibonacci numbers, Fibonacci Quart. 52 (2014), 150–163. | |
dc.relation.references | 9. Pierre J. W. A novel method for calculating the convolution sum of two finite-length sequences. IEEE Transactions on Education, vol. 39, issue 1 (1996), 77–80. | |
dc.relation.referencesen | 1. Proakis J., Manolakis D. Digital Signal Processing. Principles, by Prentice-Hall, Inc. Simon & Schuster/A Viacom Company Upper Saddle River, New Jersey, 1996, Algorithm, and Applications.WEB-resource: https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf. | |
dc.relation.referencesen | 2. T.Kim, D. Dolgy, D.Kim, et.al. Convolved Fibonacci numbers and their applications. ARS Combinatoria, 135 (2017 ): 228; arXiv:1607.06380 [math.NT] (or arXiv:1607.06380v1 [math.NT] for this version) | |
dc.relation.referencesen | 3. T. Szakács: Convolution of second-order linear recursive sequences I. Annales Mathematicae et Informaticae 46 (2016) 205–216. | |
dc.relation.referencesen | 4. Chen Z., Qi L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence Symmetry (2019), 11, 788–798. | |
dc.relation.referencesen | 5. Moree P. Convoluted Convolved Fibonacci Numbers. Journal of Integer Sequences, Vol. 7 (2004). | |
dc.relation.referencesen | 6. Vera W. De Spinadel. The Family of Metallic Means. (2014), http://www.mi.sanu.ac.rs/vismath/spinadel/]. | |
dc.relation.referencesen | 7. Zhang W., Some Identities Involving the Fibonacci Numbers. The Fibonacci Quarterly 35 (3) (1997) 225–229. | |
dc.relation.referencesen | 8. Komatsu T., Masáková Z., Pelantová E. Higher-order identities for Fibonacci numbers, Fibonacci Quart. 52 (2014), 150–163. | |
dc.relation.referencesen | 9. Pierre J. W. A novel method for calculating the convolution sum of two finite-length sequences. IEEE Transactions on Education, vol. 39, issue 1 (1996), 77–80. | |
dc.relation.uri | https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf | |
dc.relation.uri | http://www.mi.sanu.ac.rs/vismath/spinadel/ | |
dc.rights.holder | © Національний університет „Львівська політехніка“, 2020 | |
dc.rights.holder | © Kosobutskyy P., Nestor N., 2020 | |
dc.subject | Золотий переріз | |
dc.subject | металеві середні | |
dc.subject | послідовності Фібоначчі | |
dc.subject | корені квадратного рівняння | |
dc.subject | Golden ratio | |
dc.subject | metallic meаns | |
dc.subject | Fibonacci sequences | |
dc.subject | the roots of the quadratic equation | |
dc.title | The formulas for sum of products of sequences associated with the metallic means | |
dc.title.alternative | Формули сум добутків послідовностей, зв’язаних з металічними середніми | |
dc.type | Article |