Research on the characteristics of gear-cutting processes for external and internal meshing using the power skiving method

dc.citation.epage39
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage31
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationAGH University of Krakow
dc.contributor.authorHrytsay, Ihor
dc.contributor.authorSlipchuk, Andrii
dc.contributor.authorBembenek, Michal
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T07:36:59Z
dc.date.available2024-04-03T07:36:59Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe results of modelling and investigation of external and internal gear-cutting processes using the power skiving method are presented. The principles of constructing a geometric model of undistorted chip formation are described, based on parameters from which cutting forces are calculated. It is found that, under identical conditions, the cutting force is three times greater when internal gears are cut than when external gears are cut. The influence of this force on the machining error is determined by the gear pitch parameter. It is shown that the most rational way to reduce the machining error is to reduce the cutting force by reducing the axial feed rather than by increasing the number of passes.
dc.format.extent31-39
dc.format.pages9
dc.identifier.citationHrytsay I. Research on the characteristics of gear-cutting processes for external and internal meshing using the power skiving method / Ihor Hrytsay, Andrii Slipchuk, Michal Bembenek // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 31–39.
dc.identifier.citationenHrytsay I. Research on the characteristics of gear-cutting processes for external and internal meshing using the power skiving method / Ihor Hrytsay, Andrii Slipchuk, Michal Bembenek // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 31–39.
dc.identifier.doidoi.org/10.23939/ujmems2023.03.031
dc.identifier.issn2411-8001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61638
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (9), 2023
dc.relation.references[1] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, M. Krömer, "Technological and simulative analysis of power skiving", Procedia CIRP. vol. 50, pp. 773-778, 2016. https://doi.org/10.1016/j.procir.2016.05.052
dc.relation.references[2] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", International Journal of Advanced Manufacturing Technology, vol. 100, no. 5-8, pp. 1779-1785, 2019. https://doi.org/10.1007/s00170-018-2790-3
dc.relation.references[3] H.J. Stadtfeld, "Power skiving of cylindrical gears on different machine platforms", Gear Technology, vol. 1, pp. 52-62, 2014. [online] Available at: https://www.geartechnology.com/ext/resources/issues/0114x/power-skiving.pdf
dc.relation.references[4] B. Vargas, M. Zapf, J. Klose, F. Zanger, V.Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP, vol. 82, pp. 455-460. 2019. https://doi.org/10.1016/j.procir.2019.04.039
dc.relation.references[5] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020. https://doi.org/10.1016/j.promfg.2020.05.078
dc.relation.references[6] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, N. Sugita, "Using power skiving to increase the efficiency and precision of internal gear cutting", Komatsu Tech. Rep., vol. 64, pp. 1-7, 2018.
dc.relation.references[7] T. Bergs, A. Georgoussis A., C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020. https://doi.org/10.1016/j.procir.2020.05.061
dc.relation.references[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, no. 1, pp. 109-112, 2019. https://doi.org/10.1016/j.cirp.2019.04.085
dc.relation.references[9] D. Spath, A. Hühsam, "Skiving for high-performance machining of periodic structures", CIRP Annals, vol. 51, no. 1, pp. 91-94, 2002. https://doi.org/10.1016/S0007-8506(07)61473-5
dc.relation.references[10] A. Antoniadis, "Gear skiving-CAD simulation approach", Computer-Aided Design, vol. 44, no. 7, pp. 611-616, 2012. https://doi.org/10.1016/j.cad.2012.02.003
dc.relation.references[11] A. Antoniadis, N. Vidakis, N. Bilalis, "A simulation model of gear skiving", Journal of Materials Processing Technology, vol. 146, no. 2, pp. 213-220, 2004. https://doi.org/10.1016/j.jmatprotec.2003.10.019
dc.relation.references[12] I. Hrytsay, V. Stupnytskyy, V. Topchii, "Improved Method of Gear Hobbing Computer Aided Simulation". Archive of mechanical engineering, vol. 66, no. 4. pр. 475-494, 2019. DOI 10.24425/ame.2019.131358
dc.relation.references[13] V. Stupnytskyy, "Features of Functionally-Oriented Engineering Technologies in Concurrent Environment", International Journal of Engineering Research & Technology (IJERT), vol. 2 no. 9, pp.1181-1186, 2013
dc.relation.referencesen[1] F. Klocke, C. Brecher, C. Löpenhaus, P. Ganser, J. Staudt, M. Krömer, "Technological and simulative analysis of power skiving", Procedia CIRP. vol. 50, pp. 773-778, 2016. https://doi.org/10.1016/j.procir.2016.05.052
dc.relation.referencesen[2] N. Tapoglou, "Calculation of non-deformed chip and gear geometry in power skiving using a CAD-based simulation", International Journal of Advanced Manufacturing Technology, vol. 100, no. 5-8, pp. 1779-1785, 2019. https://doi.org/10.1007/s00170-018-2790-3
dc.relation.referencesen[3] H.J. Stadtfeld, "Power skiving of cylindrical gears on different machine platforms", Gear Technology, vol. 1, pp. 52-62, 2014. [online] Available at: https://www.geartechnology.com/ext/resources/issues/0114x/power-skiving.pdf
dc.relation.referencesen[4] B. Vargas, M. Zapf, J. Klose, F. Zanger, V.Schulze, "Numerical modelling of cutting forces in gear skiving", Procedia CIRP, vol. 82, pp. 455-460. 2019. https://doi.org/10.1016/j.procir.2019.04.039
dc.relation.referencesen[5] M. Inui, Y. Huang, H. Onozuka, N. Umezu, "Geometric simulation of power skiving of internal gear using solid model with triple-dexel representation", Procedia Manufacturing, vol. 48, pp. 520-527, 2020. https://doi.org/10.1016/j.promfg.2020.05.078
dc.relation.referencesen[6] T. Nishikawa, S. Shimada, G. Kobayashi, Z. Ren, N. Sugita, "Using power skiving to increase the efficiency and precision of internal gear cutting", Komatsu Tech. Rep., vol. 64, pp. 1-7, 2018.
dc.relation.referencesen[7] T. Bergs, A. Georgoussis A., C. Löpenhaus, "Development of a numerical simulation method for gear skiving", Procedia CIRP, vol. 88, pp. 352-357, 2020. https://doi.org/10.1016/j.procir.2020.05.061
dc.relation.referencesen[8] P. McCloskey, A. Katz, L. Berglind, K. Erkorkmaz, E. Ozturk, F. Ismail, "Chip geometry and cutting forces in gear power skiving", CIRP Annals, vol. 68, no. 1, pp. 109-112, 2019. https://doi.org/10.1016/j.cirp.2019.04.085
dc.relation.referencesen[9] D. Spath, A. Hühsam, "Skiving for high-performance machining of periodic structures", CIRP Annals, vol. 51, no. 1, pp. 91-94, 2002. https://doi.org/10.1016/S0007-8506(07)61473-5
dc.relation.referencesen[10] A. Antoniadis, "Gear skiving-CAD simulation approach", Computer-Aided Design, vol. 44, no. 7, pp. 611-616, 2012. https://doi.org/10.1016/j.cad.2012.02.003
dc.relation.referencesen[11] A. Antoniadis, N. Vidakis, N. Bilalis, "A simulation model of gear skiving", Journal of Materials Processing Technology, vol. 146, no. 2, pp. 213-220, 2004. https://doi.org/10.1016/j.jmatprotec.2003.10.019
dc.relation.referencesen[12] I. Hrytsay, V. Stupnytskyy, V. Topchii, "Improved Method of Gear Hobbing Computer Aided Simulation". Archive of mechanical engineering, vol. 66, no. 4. pr. 475-494, 2019. DOI 10.24425/ame.2019.131358
dc.relation.referencesen[13] V. Stupnytskyy, "Features of Functionally-Oriented Engineering Technologies in Concurrent Environment", International Journal of Engineering Research & Technology (IJERT), vol. 2 no. 9, pp.1181-1186, 2013
dc.relation.urihttps://doi.org/10.1016/j.procir.2016.05.052
dc.relation.urihttps://doi.org/10.1007/s00170-018-2790-3
dc.relation.urihttps://www.geartechnology.com/ext/resources/issues/0114x/power-skiving.pdf
dc.relation.urihttps://doi.org/10.1016/j.procir.2019.04.039
dc.relation.urihttps://doi.org/10.1016/j.promfg.2020.05.078
dc.relation.urihttps://doi.org/10.1016/j.procir.2020.05.061
dc.relation.urihttps://doi.org/10.1016/j.cirp.2019.04.085
dc.relation.urihttps://doi.org/10.1016/S0007-8506(07)61473-5
dc.relation.urihttps://doi.org/10.1016/j.cad.2012.02.003
dc.relation.urihttps://doi.org/10.1016/j.jmatprotec.2003.10.019
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Hrytsay I., Slipchuk A., Bembenek M. 2023
dc.subjectexternal and internal gears
dc.subjectpower skiving process
dc.subjectundeformed chip
dc.subjectsimulation
dc.subjectcutting force
dc.subjectcomparison
dc.subjectmachining error
dc.titleResearch on the characteristics of gear-cutting processes for external and internal meshing using the power skiving method
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v9n3_Hrytsay_I-Research_on_the_characteristics_31-39.pdf
Size:
395.94 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v9n3_Hrytsay_I-Research_on_the_characteristics_31-39__COVER.png
Size:
436.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.77 KB
Format:
Plain Text
Description: