Cracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds

dc.citation.epage635
dc.citation.issue3
dc.citation.spage625
dc.contributor.affiliationUniversitas Airlangga
dc.contributor.authorAbdulloh, Abdulloh
dc.contributor.authorRahmah, Ulfa
dc.contributor.authorPermana, Ahmadi Jaya
dc.contributor.authorMahdy, Achmad Affan
dc.contributor.authorBudiastanti, Titah Aldila
dc.contributor.authorFahmi, Mochamad Zakki
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:51:59Z
dc.date.available2024-02-12T08:51:59Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractПриродний морденіт із села Турен, округ Маланг, Індонезія, був модифікований до Fe3+-морденіту з метою одержання гетерогенного каталізатора процесу крекінгу пальмітинової кислоти для виробництва компонентів авіаційного палива. Для модифікації морденіту за допомогою FeCl3 було застосовано катіонообмінний метод. Fe3+-морденіт було охарактеризовано структурним аналізом, вмістом Fe, співвідношенням Si/Al, кількістю кислотних центрів, розміром пор, об’ємом пор і площею поверхні. Ефективність каталізатора, конверсію та селективність визначали за температури 583 К за допомогою газової хромато-мас-спектрометрії протягом 1, 2 і 3 годин. Морденіт із високим вмістом Fe має більше кислотних центрів Бренстеда-Льюїса, більші об’єм пор і площу поверхні порівняно з природним морденітом. Разом з тим, кристалічна структура Fe3+-морденіту така ж, як у природного морденіту. Fe3+-морденіт також має менший розмір пор, ніж природний морденіт. У процесі крекінгу пальмітинової кислоти Fe3+-морденіт забезпечив конверсію 61,94 % та вихід сполук авіаційного палива 92,90 %, а саме алканів, алкенів, циклоалканів і ароматичних речовин.
dc.description.abstractNatural mordenite from Turen village Malang district Indonesia has been modified to Fe3+-mordenite for heterogenous catalyst in cracking process of palmitic acid to produce Aviation fuel components. Cation exchange method has been used in mordenite modification using FeCl3. The Fe3+-mordenite was characterized by structure analysis, Fe content, Si/Al ratio, number of acid sites, pore size, pore volume, and surface area. The catalytic performances, conversion, and selectivity were measured at 583 K by GC-MS for 1, 2, and 3 hours. The high content of Fe in mordenite has larger Brønsted-Lewis’s acid site, pore volume and surface area than the natural mordenite. The crystal structure of Fe3+-mordenite is still the same with natural mordenite. The Fe3+-mordenite also has a smaller pore size than the natural mordenite. In cracking process of palmitic acid, Fe3+-mordenite performed 61.94 % of conversion and 92.90 %, which produced aviation fuel compounds, namely alkanes, alkene, cycloalkane and aromatic.
dc.format.extent625-635
dc.format.pages11
dc.identifier.citationCracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds / Abdulloh Abdulloh, Ulfa Rahmah, Ahmadi Jaya Permana, Achmad Affan Mahdy, Titah Aldila Budiastanti, Mochamad Zakki Fahmi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 625–635.
dc.identifier.citationenCracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds / Abdulloh Abdulloh, Ulfa Rahmah, Ahmadi Jaya Permana, Achmad Affan Mahdy, Titah Aldila Budiastanti, Mochamad Zakki Fahmi // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 3. — P. 625–635.
dc.identifier.doidoi.org/10.23939/chcht17.03.625
dc.identifier.issn1196-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61268
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 3 (17), 2023
dc.relation.references[1] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M.Z. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://dx.doi.org/10.23939/chcht11.01.065
dc.relation.references[2] Boichenko, S.; Vovk, O.; Iakovlieva, A. Overview of Innova-tive Technologies for Aviation Fuels Production. Chem. Chem. Technol. 2013, 7, 305-312. https://doi.org/10.23939/chcht07.03.305
dc.relation.references[3] Adi, A.C. et al. Handbook of Energy and Economic Statistics of Indonesia 2018; Ministry of Energy and Mineral Resources Republic of Indonesia: Jakarta, 2019.
dc.relation.references[4] Sukmana, Y. Mulai Bulan Ini, Indonesia Tak Impor Avtur dan Solar; Kompas.com, 2019. https://money.kompas.com/read/2019/05/10/150842626/mulai-bulan-ini-indon...
dc.relation.references[5] Blakey, S.; Rye, L.; Wilson, C.W. Aviation Gas Turbine Alternative Fuels: A Review. Proc Combust Inst 2011, 33, 2863-2885. https://doi.org/10.1016/j.proci.2010.09.011
dc.relation.references[6] Sousa, F.P.; Silva, L.N.; de Rezende, D.B.; de Oliveira, L.C.A.; Pasa, V.M.D. Simultaneous Deoxygenation, Cracking and Isomerization of Palm Kernel Oil and Palm Olein Over Beta Zeolite to Produce Biogasoline, Green Diesel and Biojet-Fuel. Fuel 2018, 223, 149-156. https://doi.org/10.1016/j.fuel.2018.03.020
dc.relation.references[7] Carli, M.F.; Susanto, B.H.; Habibie, T.K. Sythesis of Bioavture Through Hydrodeoxygenation and Catalytic Cracking from Oleic Acid Using NiMo/Zeolit Catalyst. E3S Web of Conferences 2018, 67, 02023. http://dx.doi.org/10.1051/e3sconf/20186702023
dc.relation.references[8] Abdulloh, A.; Purkan, P.; Hardiansyah, N. Preparasi dan karakterisasi α-Fe2O3/zeolit Y untuk reaksi perengkahan asam palmitat AS. Jurnal Kimia Riset 2017, 2, 69–76. http://dx.doi.org/10.20473/jkr.v2i2.6166
dc.relation.references[9] BPS, Statistik Kelapa Sawit Indonesia 2018; Badan Pusat Statistik: Indonesia, 2019.
dc.relation.references[10] BPS, ESDM dalam Angka 2016, [Online] 2017. http://esdm.jatimprov.go.id/esdm/attachments/article/89/esdm dalam angka 2016.pdf. [Accessed: 15-Dec-2019].
dc.relation.references[11] Rahayu, P.E.; Priatmoko, S.; Kadarwati, S. Konversi Minyak Sawit Menjadi Biogasoline Menggunakan Katalis Ni/Zeolit Alam. Indo. J. Chem. Sci. 2013, 2, 102-107.
dc.relation.references[12] Prado, C.M.R.; Antoniosi Filho, N.R. Production and Charac-terization of the Biofuels Obtained by Thermal Cracking and Ther-mal Catalytic Cracking of Vegetable Oils. J Anal Appl Pyrolysis 2009, 86, 338-347. https://doi.org/10.1016/j.jaap.2009.08.005
dc.relation.references[13] Ravindra Reddy, C.; Nagendrappa, G.; Jai Prakash, B.S. Surface Acidity Study of Mn+-Montmorillonite Clay Catalysts by FT-IR Spectroscopy: Correlation with Esterification Activity Catal. Commun. 2007, 8, 241-246. http://dx.doi.org/10.1016/j.catcom.2006.06.023
dc.relation.references[14] Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. Dev. Clay Sci. 2006, 1, 1-18. http://dx.doi.org/10.1016/S1572-4352(05)01001-9
dc.relation.references[15] Joeniarti, E.; Susilo, A.; Ardiarini, N.R.; Indrasari, N.; Fahmi, M.Z. Efficiency Study of Neem Seeds-Based Nanobiopesticides. Chem. Chem. Technol. 2019, 13, 240-246. https://doi.org/10.23939/chcht13.02.240
dc.relation.references[16] Prelina, B.; Wardana, J.; Isyatir, R.A.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y.; Wathoniyyah, M.; Widati, A.A.; Fahmi, M.Z. Innovation of Zeolite Modified Polyethersulfone Hollow Fibre Membrane for Haemodialysis of Creatinine. Chem. Chem. Technol. 2018, 12, 331-336. https://doi.org/10.23939/chcht12.03.331
dc.relation.references[17] Jaya Hardi, R.; Mirzan, M. Sintesis dan karakterisasi katalis lempung terpilar zirkonia tersulfatasi sebagai katalis perengkah. Prosiding Seminar Nasional Kimia UNY 2017 325-334.
dc.relation.references[18] Duhamel T.; Muñiz, K. Cooperative Iodine and Photoredox Catalysis for Direct Oxidative Lactonization of Carboxylic Acids. Chem. Commun. 2019, 55, 933-936. https://doi.org/10.1039/C8CC08594C
dc.relation.references[19] Liu, Y.; Yao, L.; Xin, H.; Wang, G.; Li, D.; Hu, C. The Pro-duction of Diesel-Like Hydrocarbons from Palmitic Acid over HZSM-22 Supported Nickel Phosphide Catalysts. Appl. Catal. B 2015, 174–175, 504-514. https://doi.org/10.1016/j.apcatb.2015.03.023
dc.relation.references[20] Abbot, J.; Wojciechowski, B.W. The Mechanism of Catalytic Cracking of n-Alkenes on ZSM-5 Zeolite. Can J Chem Eng 1985, 63, 462–469. https://doi.org/10.1002/cjce.5450630315
dc.relation.references[21] Oliver-Tomas, B.; Gonell, F.; Pulido, A.; Renz, M.; Boronat, M. Effect of the Cα Substitution on the Ketonic Decarboxylation of Carboxylic Acids over m-ZrO2: The Role of Entropy. Catal. Sci. Technol. 2016, 6, 5561-5566. https://doi.org/10.1039/C6CY00395H
dc.relation.referencesen[1] Wafiroh, S.; Wathoniyyah, M.; Abdulloh, A.; Rahardjo, Y.; Fahmi, M.Z. Application of Glutaraldehyde-Crosslinked Chitosan Membranes from Shrimp Shellwaste on Production of Biodiesel from Calophyllum Inophyllum Oil. Chem. Chem. Technol. 2017, 11, 65-70. https://dx.doi.org/10.23939/chcht11.01.065
dc.relation.referencesen[2] Boichenko, S.; Vovk, O.; Iakovlieva, A. Overview of Innova-tive Technologies for Aviation Fuels Production. Chem. Chem. Technol. 2013, 7, 305-312. https://doi.org/10.23939/chcht07.03.305
dc.relation.referencesen[3] Adi, A.C. et al. Handbook of Energy and Economic Statistics of Indonesia 2018; Ministry of Energy and Mineral Resources Republic of Indonesia: Jakarta, 2019.
dc.relation.referencesen[4] Sukmana, Y. Mulai Bulan Ini, Indonesia Tak Impor Avtur dan Solar; Kompas.com, 2019. https://money.kompas.com/read/2019/05/10/150842626/mulai-bulan-ini-indon...
dc.relation.referencesen[5] Blakey, S.; Rye, L.; Wilson, C.W. Aviation Gas Turbine Alternative Fuels: A Review. Proc Combust Inst 2011, 33, 2863-2885. https://doi.org/10.1016/j.proci.2010.09.011
dc.relation.referencesen[6] Sousa, F.P.; Silva, L.N.; de Rezende, D.B.; de Oliveira, L.C.A.; Pasa, V.M.D. Simultaneous Deoxygenation, Cracking and Isomerization of Palm Kernel Oil and Palm Olein Over Beta Zeolite to Produce Biogasoline, Green Diesel and Biojet-Fuel. Fuel 2018, 223, 149-156. https://doi.org/10.1016/j.fuel.2018.03.020
dc.relation.referencesen[7] Carli, M.F.; Susanto, B.H.; Habibie, T.K. Sythesis of Bioavture Through Hydrodeoxygenation and Catalytic Cracking from Oleic Acid Using NiMo/Zeolit Catalyst. E3S Web of Conferences 2018, 67, 02023. http://dx.doi.org/10.1051/e3sconf/20186702023
dc.relation.referencesen[8] Abdulloh, A.; Purkan, P.; Hardiansyah, N. Preparasi dan karakterisasi α-Fe2O3/zeolit Y untuk reaksi perengkahan asam palmitat AS. Jurnal Kimia Riset 2017, 2, 69–76. http://dx.doi.org/10.20473/jkr.v2i2.6166
dc.relation.referencesen[9] BPS, Statistik Kelapa Sawit Indonesia 2018; Badan Pusat Statistik: Indonesia, 2019.
dc.relation.referencesen[10] BPS, ESDM dalam Angka 2016, [Online] 2017. http://esdm.jatimprov.go.id/esdm/attachments/article/89/esdm dalam angka 2016.pdf. [Accessed: 15-Dec-2019].
dc.relation.referencesen[11] Rahayu, P.E.; Priatmoko, S.; Kadarwati, S. Konversi Minyak Sawit Menjadi Biogasoline Menggunakan Katalis Ni/Zeolit Alam. Indo. J. Chem. Sci. 2013, 2, 102-107.
dc.relation.referencesen[12] Prado, C.M.R.; Antoniosi Filho, N.R. Production and Charac-terization of the Biofuels Obtained by Thermal Cracking and Ther-mal Catalytic Cracking of Vegetable Oils. J Anal Appl Pyrolysis 2009, 86, 338-347. https://doi.org/10.1016/j.jaap.2009.08.005
dc.relation.referencesen[13] Ravindra Reddy, C.; Nagendrappa, G.; Jai Prakash, B.S. Surface Acidity Study of Mn+-Montmorillonite Clay Catalysts by FT-IR Spectroscopy: Correlation with Esterification Activity Catal. Commun. 2007, 8, 241-246. http://dx.doi.org/10.1016/j.catcom.2006.06.023
dc.relation.referencesen[14] Bergaya, F.; Lagaly, G. Chapter 1 General Introduction: Clays, Clay Minerals, and Clay Science. Dev. Clay Sci. 2006, 1, 1-18. http://dx.doi.org/10.1016/S1572-4352(05)01001-9
dc.relation.referencesen[15] Joeniarti, E.; Susilo, A.; Ardiarini, N.R.; Indrasari, N.; Fahmi, M.Z. Efficiency Study of Neem Seeds-Based Nanobiopesticides. Chem. Chem. Technol. 2019, 13, 240-246. https://doi.org/10.23939/chcht13.02.240
dc.relation.referencesen[16] Prelina, B.; Wardana, J.; Isyatir, R.A.; Syukriyah, Z.; Wafiroh, S.; Raharjo, Y.; Wathoniyyah, M.; Widati, A.A.; Fahmi, M.Z. Innovation of Zeolite Modified Polyethersulfone Hollow Fibre Membrane for Haemodialysis of Creatinine. Chem. Chem. Technol. 2018, 12, 331-336. https://doi.org/10.23939/chcht12.03.331
dc.relation.referencesen[17] Jaya Hardi, R.; Mirzan, M. Sintesis dan karakterisasi katalis lempung terpilar zirkonia tersulfatasi sebagai katalis perengkah. Prosiding Seminar Nasional Kimia UNY 2017 325-334.
dc.relation.referencesen[18] Duhamel T.; Muñiz, K. Cooperative Iodine and Photoredox Catalysis for Direct Oxidative Lactonization of Carboxylic Acids. Chem. Commun. 2019, 55, 933-936. https://doi.org/10.1039/P.8CC08594C
dc.relation.referencesen[19] Liu, Y.; Yao, L.; Xin, H.; Wang, G.; Li, D.; Hu, C. The Pro-duction of Diesel-Like Hydrocarbons from Palmitic Acid over HZSM-22 Supported Nickel Phosphide Catalysts. Appl. Catal. B 2015, 174–175, 504-514. https://doi.org/10.1016/j.apcatb.2015.03.023
dc.relation.referencesen[20] Abbot, J.; Wojciechowski, B.W. The Mechanism of Catalytic Cracking of n-Alkenes on ZSM-5 Zeolite. Can J Chem Eng 1985, 63, 462–469. https://doi.org/10.1002/cjce.5450630315
dc.relation.referencesen[21] Oliver-Tomas, B.; Gonell, F.; Pulido, A.; Renz, M.; Boronat, M. Effect of the Cα Substitution on the Ketonic Decarboxylation of Carboxylic Acids over m-ZrO2: The Role of Entropy. Catal. Sci. Technol. 2016, 6, 5561-5566. https://doi.org/10.1039/P.6CY00395H
dc.relation.urihttps://dx.doi.org/10.23939/chcht11.01.065
dc.relation.urihttps://doi.org/10.23939/chcht07.03.305
dc.relation.urihttps://money.kompas.com/read/2019/05/10/150842626/mulai-bulan-ini-indon..
dc.relation.urihttps://doi.org/10.1016/j.proci.2010.09.011
dc.relation.urihttps://doi.org/10.1016/j.fuel.2018.03.020
dc.relation.urihttp://dx.doi.org/10.1051/e3sconf/20186702023
dc.relation.urihttp://dx.doi.org/10.20473/jkr.v2i2.6166
dc.relation.urihttp://esdm.jatimprov.go.id/esdm/attachments/article/89/esdm
dc.relation.urihttps://doi.org/10.1016/j.jaap.2009.08.005
dc.relation.urihttp://dx.doi.org/10.1016/j.catcom.2006.06.023
dc.relation.urihttp://dx.doi.org/10.1016/S1572-4352(05)01001-9
dc.relation.urihttps://doi.org/10.23939/chcht13.02.240
dc.relation.urihttps://doi.org/10.23939/chcht12.03.331
dc.relation.urihttps://doi.org/10.1039/C8CC08594C
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2015.03.023
dc.relation.urihttps://doi.org/10.1002/cjce.5450630315
dc.relation.urihttps://doi.org/10.1039/C6CY00395H
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Abdulloh A., Rahmah U., Permana A. J., Mahdy A. A., Budiastanti T. A., Fahmi M. Z., 2023
dc.subjectавіаційне паливо
dc.subjectморденіт
dc.subjectкатіонний обмін
dc.subjectкислотний центр
dc.subjectпальмітинова кислота
dc.subjectaviation fuel
dc.subjectmordenite
dc.subjectcation exchanged
dc.subjectacid site
dc.subjectpalmitic acid
dc.titleCracking Optimization of Palmitic Acid Using Fe3+ Modified Natural Mordenite for Producing Aviation Fuel Compounds
dc.title.alternativeОптимізація крекінгу пальмітинової кислоти з використанням природного морденіту, модифікованого Fe3+, для виробництва сполук авіаційного палива
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n3_Abdulloh_A-Cracking_Optimization_625-635.pdf
Size:
612.87 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n3_Abdulloh_A-Cracking_Optimization_625-635__COVER.png
Size:
561.35 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: