Анонімізація даних з використанням блокчейн технології: модель керування життєвим циклом даних для забезпечення прозорості та відповідності GDPR

dc.citation.epage188
dc.citation.issue2
dc.citation.journalTitleКомп'ютерні системи та мережі
dc.citation.spage179
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПавлів, А. С.
dc.contributor.authorPavliv, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-11T11:15:18Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractШвидке зростання обсягу персональних даних, що збираються та обробляються різними організаціями, створює значні виклики для забезпечення конфіденційності та безпеки інформації. Загальний регламент захисту даних (GDPR) Європейського Союзу визначає суворі вимоги до обробки, зберігання та видалення персональних даних, зокрема, право на стирання, яке передбачає повне і безповоротне видалення інформації на запит користувача. Це створює проблеми для традиційних систем управління даними, які не можуть забезпечити автоматизоване видалення та надійний контроль за дотриманням термінів зберігання. У статті запропоновано нову модель анонімізації даних на основі блокчейн- технологій, яка об’єднує смарт-контракти для автоматизації операцій з даними, використовуючи криптографічні методи для створення стійкої до деанонімізації системи. Модель забезпечує контроль та відповідність вимогам регуляторів, зберігаючи прозорість та безпеку всіх транзакцій.
dc.description.abstractThe rapid growth in the volume of personal data collected and processed by various organizations poses significant challenges for ensuring information privacy and security. The General Data Protection Regulation (GDPR) of the European Union sets strict requirements for the processing, storage, and deletion of personal data, including the right to be forgotten, which entails the complete and irreversible deletion of information upon user request. This creates problems for traditional data management systems that cannot provide automated deletion and reliable compliance monitoring.This article proposes a new model for data anonymization based on blockchain technologies that combines smart contracts to automate data operations while using cryptographic methods to create a system resilient to de-anonymization. The model ensures control and compliance with regulatory requirements while maintaining transparency and security for all transactions.
dc.format.extent179-188
dc.format.pages10
dc.identifier.citationПавлів А. С. Анонімізація даних з використанням блокчейн технології: модель керування життєвим циклом даних для забезпечення прозорості та відповідності GDPR / А. С. Павлів // Комп'ютерні системи та мережі. — Львів : Видавництво Львівської політехніки, 2024. — Том 6. — № 2. — С. 179–188.
dc.identifier.citation2015Павлів А. С. Анонімізація даних з використанням блокчейн технології: модель керування життєвим циклом даних для забезпечення прозорості та відповідності GDPR // Комп'ютерні системи та мережі, Львів. 2024. Том 6. № 2. С. 179–188.
dc.identifier.citationenAPAPavliv, A. (2024). Anonimizatsiia danykh z vykorystanniam blokchein tekhnolohii: model keruvannia zhyttievym tsyklom danykh dlia zabezpechennia prozorosti ta vidpovidnosti GDPR [Anonymization of data using blockchain technology: a model for data lifecycle management to ensure transparency and compliance with GDPR]. Computer Systems and Networks, 6(2), 179-188. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOPavliv A. (2024) Anonimizatsiia danykh z vykorystanniam blokchein tekhnolohii: model keruvannia zhyttievym tsyklom danykh dlia zabezpechennia prozorosti ta vidpovidnosti GDPR [Anonymization of data using blockchain technology: a model for data lifecycle management to ensure transparency and compliance with GDPR]. Computer Systems and Networks (Lviv), vol. 6, no 2, pp. 179-188 [in Ukrainian].
dc.identifier.doiDOI: https://doi.org/10.23939/csn2024.02.179
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/123977
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп'ютерні системи та мережі, 2 (6), 2024
dc.relation.ispartofComputer Systems and Networks, 2 (6), 2024
dc.relation.references1. Dove E. S. (2023). Confidentiality, public interest, and the human right to science: When can confidential information be used for the benefit of the wider community? Journal of Law and the Biosciences, 10(1), Article lsad013. https://doi.org/10.1093/jlb/lsad013
dc.relation.references2. GDPR.eu. (n.d.). General Data Protection Regulation (GDPR) – Official Legal Text. Retrieved from https://gdpr-info.eu/.
dc.relation.references3. GDPR.eu. (n.d.). Art. 17 GDPR – Right to erasure (‘right to be forgotten’). Retrieved from https://gdprinfo.eu/art-17-gdpr/.
dc.relation.references4. Tachepun C., & Thammaboosadee S. (2020). A Data Masking Guideline for Optimizing Insights and Privacy Under GDPR Compliance. In Proceedings of the 11th International Conference on Advances in Information Technology (IAIT '20) (Article No. 22, p. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3406601.3406627
dc.relation.references5. Kohlmayer F., Lautenschläger R., & Prasser F. (2019). Pseudonymization for research data collection: Is the juice worth the squeeze? BMC Medical Informatics and Decision Making, 19, 178.https://doi.org/10.1186/s12911-019-0905-x
dc.relation.references6. Cai S., Gallina B., Nyström D., & Wąsowski A. (2019). Data aggregation processes: A survey, a taxonomy, and design guidelines. Computing, 101(10), 1397–1429. https://doi.org/10.1007/s00607-018-0679-5
dc.relation.references7. Riplinger L., Piera-Jiménez J., & Pursley Dooling J. (2020). Patient Identification Techniques –Approaches, Implications, and Findings. Yearbook of Medical Informatics, 29(1), 81–86. https://doi.org/10.1055/s-0040-1701984
dc.relation.references8. Monteiro S., Oliveira D., António J., Martins P. & Abbasi M. (2024). Data Anonymization: Techniques and Models. Reis J. L., Del Rio Araujo M., Reis L. P., dos Santos, J. P. M. (eds) Marketing and Smart Technologies.ICMarkTech 2022. Smart Innovation, Systems and Technologies, vol 344. Springer, Singapore.https://doi.org/10.1007/978-981-99-0333-7_6.
dc.relation.references9. Shao Y., Liu J., Shi S. & Zhang Y. (2019). Fast de-anonymization of social networks with structural information. Data Science and Engineering, 4(1), 76–92. https://doi.org/10.1007/s41019-019-0086-8
dc.relation.references10. Tripathi G., Ahad, M. A. & Casalino G. (2023). A comprehensive review of blockchain technology:Underlying principles and historical background with future challenges. Digital Applications and Technology, 3,Article 100344. https://doi.org/10.1016/j.dajour.2023.100344
dc.relation.references11. Bodó B., Brekke J. K, & Hoepman J. H. (2021). Decentralisation: A multidisciplinary perspective. Internet Policy Review, 10(2). https://doi.org/10.14763/2021.2.1563
dc.relation.references12. Boumaouche O., Ghenai A. & Zeghib N. (2020). Data Oriented Blockchain: Off-Chain Storage with Data Dedicated and Prunable Transactions. В Advanced Communication Systems and Information Security (ACOSIS2019). Communications in Computer and Information Science, vol 1264. Springer, Cham. DOI: 10.1007/978-3-030-61143-9_16.
dc.relation.references13. Wei Zhou et al., "A Blockchain-Based Privacy-Preserving and Fair Data Transaction Model in IoT",Applied Sciences, 2023. DOI: 10.3390/app132212389.
dc.relation.references14. Tran Q. N., Turnbull B. P., Wu H., Hu J. & Others. (2021). A survey on privacy-preserving blockchain systems (PPBS) and a novel PPBS-based framework for smart agriculture. IEEE Open Journal of the Computer Society, 99, 1-1. https://doi.org/10.1109/OJCS.2021.3053032
dc.relation.references15. Bao H., Yuan M., Deng H., Xu J. & Zhao Y. (2024). Secure multiparty computation protocol based on homomorphic encryption and its application in blockchain. Heliyon, 10(1), e34458.https://doi.org/10.1016/j.heliyon.2024.e34458
dc.relation.references16. Zhou W., Zhang D., Han G., Wang X. & other authors. (2023). A Blockchain-Based Privacy-Preserving and Fair Data Transaction Model in IoT. Applied Sciences, 13(22), 12389. https://doi.org/10.3390/app132212389
dc.relation.references17. Alamri B., Javed I. T. & Margaria T. (2021, April 19–21). A GDPR-Compliant Framework for IoT-Based Personal Health Records Using Blockchain. Proceedings of the 2021 International Conference on New Technologies, Mobility and Security (NTMS). IEEE. https://doi.org/10.1109/NTMS49979.2021.9432661
dc.relation.references18. Shashidhara R., Chirakarotu Nair R. & Panakalapati P. (2024). Promise of Zero-Knowledge Proofs (ZKPs) for Blockchain Privacy and Security: Opportunities, Challenges, and Future Directions. Security and Privacy, 2024. https://doi.org/10.1002/spy2.461
dc.relation.references19. Capraz S. & Ozsoy A. (2021). Personal Data Protection in Blockchain with Zero-Knowledge Proof. In Proceedings of the 2021 International Conference on Information and Communication Technologies (ICT). Springer.https://doi.org/10.1007/978-981-33-6470-7_7
dc.relation.references20. El Emam K., Mosquera L. & Fang X. (2022). Validating a membership disclosure metric for synthetic health data. JAMIA Open, 5(4), ooac083. https://doi.org/10.1093/jamiaopen/ooac083
dc.relation.references21. Torra V. & Navarro-Arribas G. (2023). Attribute disclosure risk for k-anonymity: The case of numericaldata. International Journal of Information Security, 22, 2015–2024. https://doi.org/10.1007/s10207-023-00730-x
dc.relation.references22. Su B., Huang J., Miao K., Wang Z., Zhang X. & Chen Y. (2023). K-Anonymity privacy protection algorithm for multi-dimensional data against skewness and similarity attacks. Sensors, 23(3), 1554.https://doi.org/10.3390/s23031554
dc.relation.references23. Liu J., Zhang S., Luo Y. & Cao L. (2022). Machine Learning-Based Similarity Attacks for Chaos-Based Cryptosystems. IEEE Transactions on Emerging Topics in Computing, 10(2), 824–837.https://doi.org/10.1109/TETC.2020.3048498
dc.relation.referencesen1. Dove E. S. (2023). Confidentiality, public interest, and the human right to science: When can confidential information be used for the benefit of the wider community? Journal of Law and the Biosciences, 10(1), Article lsad013. https://doi.org/10.1093/jlb/lsad013
dc.relation.referencesen2. GDPR.eu. (n.d.). General Data Protection Regulation (GDPR) – Official Legal Text. Retrieved from https://gdpr-info.eu/.
dc.relation.referencesen3. GDPR.eu. (n.d.). Art. 17 GDPR – Right to erasure (‘right to be forgotten’). Retrieved from https://gdprinfo.eu/art-17-gdpr/.
dc.relation.referencesen4. Tachepun C., & Thammaboosadee S. (2020). A Data Masking Guideline for Optimizing Insights and Privacy Under GDPR Compliance. In Proceedings of the 11th International Conference on Advances in Information Technology (IAIT '20) (Article No. 22, p. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3406601.3406627
dc.relation.referencesen5. Kohlmayer F., Lautenschläger R., & Prasser F. (2019). Pseudonymization for research data collection: Is the juice worth the squeeze? BMC Medical Informatics and Decision Making, 19, 178.https://doi.org/10.1186/s12911-019-0905-x
dc.relation.referencesen6. Cai S., Gallina B., Nyström D., & Wąsowski A. (2019). Data aggregation processes: A survey, a taxonomy, and design guidelines. Computing, 101(10), 1397–1429. https://doi.org/10.1007/s00607-018-0679-5
dc.relation.referencesen7. Riplinger L., Piera-Jiménez J., & Pursley Dooling J. (2020). Patient Identification Techniques –Approaches, Implications, and Findings. Yearbook of Medical Informatics, 29(1), 81–86. https://doi.org/10.1055/s-0040-1701984
dc.relation.referencesen8. Monteiro S., Oliveira D., António J., Martins P. & Abbasi M. (2024). Data Anonymization: Techniques and Models. Reis J. L., Del Rio Araujo M., Reis L. P., dos Santos, J. P. M. (eds) Marketing and Smart Technologies.ICMarkTech 2022. Smart Innovation, Systems and Technologies, vol 344. Springer, Singapore.https://doi.org/10.1007/978-981-99-0333-7_6.
dc.relation.referencesen9. Shao Y., Liu J., Shi S. & Zhang Y. (2019). Fast de-anonymization of social networks with structural information. Data Science and Engineering, 4(1), 76–92. https://doi.org/10.1007/s41019-019-0086-8
dc.relation.referencesen10. Tripathi G., Ahad, M. A. & Casalino G. (2023). A comprehensive review of blockchain technology:Underlying principles and historical background with future challenges. Digital Applications and Technology, 3,Article 100344. https://doi.org/10.1016/j.dajour.2023.100344
dc.relation.referencesen11. Bodó B., Brekke J. K, & Hoepman J. H. (2021). Decentralisation: A multidisciplinary perspective. Internet Policy Review, 10(2). https://doi.org/10.14763/2021.2.1563
dc.relation.referencesen12. Boumaouche O., Ghenai A. & Zeghib N. (2020). Data Oriented Blockchain: Off-Chain Storage with Data Dedicated and Prunable Transactions. V Advanced Communication Systems and Information Security (ACOSIS2019). Communications in Computer and Information Science, vol 1264. Springer, Cham. DOI: 10.1007/978-3-030-61143-9_16.
dc.relation.referencesen13. Wei Zhou et al., "A Blockchain-Based Privacy-Preserving and Fair Data Transaction Model in IoT",Applied Sciences, 2023. DOI: 10.3390/app132212389.
dc.relation.referencesen14. Tran Q. N., Turnbull B. P., Wu H., Hu J. & Others. (2021). A survey on privacy-preserving blockchain systems (PPBS) and a novel PPBS-based framework for smart agriculture. IEEE Open Journal of the Computer Society, 99, 1-1. https://doi.org/10.1109/OJCS.2021.3053032
dc.relation.referencesen15. Bao H., Yuan M., Deng H., Xu J. & Zhao Y. (2024). Secure multiparty computation protocol based on homomorphic encryption and its application in blockchain. Heliyon, 10(1), e34458.https://doi.org/10.1016/j.heliyon.2024.e34458
dc.relation.referencesen16. Zhou W., Zhang D., Han G., Wang X. & other authors. (2023). A Blockchain-Based Privacy-Preserving and Fair Data Transaction Model in IoT. Applied Sciences, 13(22), 12389. https://doi.org/10.3390/app132212389
dc.relation.referencesen17. Alamri B., Javed I. T. & Margaria T. (2021, April 19–21). A GDPR-Compliant Framework for IoT-Based Personal Health Records Using Blockchain. Proceedings of the 2021 International Conference on New Technologies, Mobility and Security (NTMS). IEEE. https://doi.org/10.1109/NTMS49979.2021.9432661
dc.relation.referencesen18. Shashidhara R., Chirakarotu Nair R. & Panakalapati P. (2024). Promise of Zero-Knowledge Proofs (ZKPs) for Blockchain Privacy and Security: Opportunities, Challenges, and Future Directions. Security and Privacy, 2024. https://doi.org/10.1002/spy2.461
dc.relation.referencesen19. Capraz S. & Ozsoy A. (2021). Personal Data Protection in Blockchain with Zero-Knowledge Proof. In Proceedings of the 2021 International Conference on Information and Communication Technologies (ICT). Springer.https://doi.org/10.1007/978-981-33-6470-7_7
dc.relation.referencesen20. El Emam K., Mosquera L. & Fang X. (2022). Validating a membership disclosure metric for synthetic health data. JAMIA Open, 5(4), ooac083. https://doi.org/10.1093/jamiaopen/ooac083
dc.relation.referencesen21. Torra V. & Navarro-Arribas G. (2023). Attribute disclosure risk for k-anonymity: The case of numericaldata. International Journal of Information Security, 22, 2015–2024. https://doi.org/10.1007/s10207-023-00730-x
dc.relation.referencesen22. Su B., Huang J., Miao K., Wang Z., Zhang X. & Chen Y. (2023). K-Anonymity privacy protection algorithm for multi-dimensional data against skewness and similarity attacks. Sensors, 23(3), 1554.https://doi.org/10.3390/s23031554
dc.relation.referencesen23. Liu J., Zhang S., Luo Y. & Cao L. (2022). Machine Learning-Based Similarity Attacks for Chaos-Based Cryptosystems. IEEE Transactions on Emerging Topics in Computing, 10(2), 824–837.https://doi.org/10.1109/TETC.2020.3048498
dc.relation.urihttps://doi.org/10.1093/jlb/lsad013
dc.relation.urihttps://gdpr-info.eu/
dc.relation.urihttps://gdprinfo.eu/art-17-gdpr/
dc.relation.urihttps://doi.org/10.1145/3406601.3406627
dc.relation.urihttps://doi.org/10.1186/s12911-019-0905-x
dc.relation.urihttps://doi.org/10.1007/s00607-018-0679-5
dc.relation.urihttps://doi.org/10.1055/s-0040-1701984
dc.relation.urihttps://doi.org/10.1007/978-981-99-0333-7_6
dc.relation.urihttps://doi.org/10.1007/s41019-019-0086-8
dc.relation.urihttps://doi.org/10.1016/j.dajour.2023.100344
dc.relation.urihttps://doi.org/10.14763/2021.2.1563
dc.relation.urihttps://doi.org/10.1109/OJCS.2021.3053032
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2024.e34458
dc.relation.urihttps://doi.org/10.3390/app132212389
dc.relation.urihttps://doi.org/10.1109/NTMS49979.2021.9432661
dc.relation.urihttps://doi.org/10.1002/spy2.461
dc.relation.urihttps://doi.org/10.1007/978-981-33-6470-7_7
dc.relation.urihttps://doi.org/10.1093/jamiaopen/ooac083
dc.relation.urihttps://doi.org/10.1007/s10207-023-00730-x
dc.relation.urihttps://doi.org/10.3390/s23031554
dc.relation.urihttps://doi.org/10.1109/TETC.2020.3048498
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Павлів А. С., 2024
dc.subjectанонімізація даних
dc.subjectблокчейн
dc.subjectофчейн
dc.subjectправо на стирання
dc.subjectсмарт- контракти
dc.subjectуправління даними
dc.subjectblockchain
dc.subjectdata anonymization
dc.subjectdata management
dc.subjectoffchain
dc.subjectright to be forgotten
dc.subjectsmart contracts
dc.subject.udc004.9
dc.subject.udc007.5
dc.titleАнонімізація даних з використанням блокчейн технології: модель керування життєвим циклом даних для забезпечення прозорості та відповідності GDPR
dc.title.alternativeAnonymization of data using blockchain technology: a model for data lifecycle management to ensure transparency and compliance with GDPR
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n2_Pavliv_A-Anonymization_of_data_using_179-188.pdf
Size:
904.76 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.74 KB
Format:
Plain Text
Description: