Composite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement

dc.citation.epage15
dc.citation.issue1
dc.citation.journalTitleХімія та хімічна технологія
dc.citation.spage7
dc.citation.volume18
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorNovytskyi, Yurii
dc.contributor.authorTopylko, Nataliia
dc.contributor.authorMarushchak, Uliana
dc.contributor.authorTurba, Yura
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-24T06:19:54Z
dc.date.created2024-03-01
dc.date.issued2024-03-01
dc.description.abstractСтаття містить матеріали досліджень щодо вирішення проблеми утилізації відходів фосфогіпсу через його використання в шарах основи дорожньої конструкції. З цією метою були приготовані композиційні суміші на основі сирого відвального фосфогіпсу. Склад композиційних сумішей оптимізовано таким чином, щоб вміст фосфогіпсу був максимальним. Фосфогіпс стабілізували доменним гранульованим шлаком і портландцементом. Лабораторними випробуваннями встановлено, що композиційні матеріали на основі фосфогіпсу задовольняють вимоги ДСТУ 9177-3:2022 Частина 3, Матеріали укріплені мінеральними в’яжучими, за показниками міцності на одноосьовий стиск і морозостійкості. Х-променевим дифрактометричним аналізом виявлено новоутворені мінеральні фази в процесі гідратації композиційних матеріалів на основі “фосфогіпсдоменний гранульований шлак-портландцемент”.
dc.description.abstractThe article contains research materials on solving the problem of utilization of waste phosphogypsum by using it in the layers of the road base. For this purpose, composite mixtures based on raw dump phosphogypsum were prepared. The composition of the composite mixtures was optimized to maximize the phosphogypsum content. The phosphogypsum was stabilized with ground granulated blast furnace slag and Portland cement. Laboratory tests have shown that the phosphogypsum-based composite materials meet the requirements of the National Standard of Ukraine DSTU 9177-3:2022 in terms of uniaxial compressive strength and frost resistance. The newly formed mineral phases during the hydration of composite materials based on phosphogypsum-ground granulated blast furnace slag-Portland cement were described using X-ray diffractometric analysis.
dc.format.extent7-15
dc.format.pages9
dc.identifier.citationComposite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement / Yurii Novytskyi, Nataliia Topylko, Uliana Marushchak, Yura Turba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 7–15.
dc.identifier.citationenComposite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement / Yurii Novytskyi, Nataliia Topylko, Uliana Marushchak, Yura Turba // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 18. — No 1. — P. 7–15.
dc.identifier.doidoi.org/10.23939/chcht18.01.007
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111778
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія та хімічна технологія, 1 (18), 2024
dc.relation.ispartofChemistry & Chemical Technology, 1 (18), 2024
dc.relation.references[1] Ivashchenko, T.; Ince, I. Ecological Aspects of Phosphogypsum Utilization Technologies. Visnyk of Chernihiv State Technological University 2014, 2, 223–228. http://ir.stu.cn.ua/123456789/7462
dc.relation.references[2] Chernysh, Ye.Yu.; Vaskin, R.A.; Yakhnenko, O.M. Rozrobka ekolohichno bezpechnykh tekhnolohichnykh rishen utylizatsii fosfohipsu v tekhnolohiiakh zakhystu navkolyshnoho seredovyshcha. Ecological Safety and Balanced Use of Resources 2017, 2, 140–147. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/166
dc.relation.references[3] Malanchuk, Z.R.; Korniienko, V.Ya.; Vasylchuk, O.Yu.; Zaiets, V.V. Problemy pererobky ta vyluchennia ridkozemelnykh metaliv z tekhnohennykh rodovyshch fosfohipsu. Science and Education a New Dimension. Natural and Technical Sciences 2018, 179, 55–58. https://doi.org/10.31174/SEND-NT2018-179VI21-14
dc.relation.references[4] Malanchuk, Z.; Korniyenko, V.; Malanchuk, Y.; Khrystyuk, A. Results of Experimental Studies of Amber Extraction by Hydrome chanical Method in Ukraine. EasternEuropean J. Enterp. Technol. 2016, 3, 24–28 https://doi.org/10.15587/1729-4061.2016.72404
dc.relation.references[5] Malanchuk, Z.; Malanchuk, Y.; Korniyenko, V.; Ignatyuk, I. Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. EasternEuropean J. Enterp. Technol. 2017, 1, 45–51. https://doi.org/10.15587/1729-4061.2017.92638
dc.relation.references[6] Yakhnenko, O.M.; Chernysh, Ye.Yu.; Pliatsuk, L.D.; Trunova, I.O. Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources 2015, 1, 110–119. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/214
dc.relation.references[7] Tsioka, M.; Voudrias, E. A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386
dc.relation.references[8] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry. Chem. Chem. Technol. 2023, 17, 666–673 https://doi.org/10.23939/chcht17.03.666
dc.relation.references[9] Chaimaâ, D.A.; Khaled, L.; Amina, A.; Kamal, E.O. Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. J. Mater. Sci. Eng. A. 2022, 12, 115–130. https://doi.org/10.17265/2161-6213/2022.10-12.002
dc.relation.references[10] Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18–22. https://doi.org/10.2478/v10026-011-0018-5
dc.relation.references[11] Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K. E.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Materials Today: Proceedings 2022, 58, 1054-1058. https://doi.org/10.1016/j.matpr.2022.01.084
dc.relation.references[12] Malkawi, D.A.; Rabab'ah, S.R.; AlSyouf, M.M.; Aldeeky,H. Utilizing Expansive Soil Treated with Phosphogypsum and Lime in Pavement Construction. Results in Engineering 2023, 19, 101256. https://doi.org/10.1016/j.rineng.2023.101256
dc.relation.references[13] Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267
dc.relation.references[14] Meskini, S.; Samdi, A.; Ejjaouani, H.; Remmal, T. Valorization of Phosphogypsum as a Road Material: Stabilizing Effect of Fly Ash and Lime Additives on Strength and Durability. J. Clean. Prod. 2021, 323, 129161. https://doi.org/10.1016/j.jclepro.2021.129161
dc.relation.references[15] Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A Phosphogypsum-Based Road Material with Enhanced Mechanical Properties for Sustainable Environmental Remediation. Environ. Prog. Sustainable Energy 2022, 41, e13732. https://doi.org/10.1002/ep.13732
dc.relation.references[16] Shen, W.; Zhou, M.; Zhao, Q. Study on Lime–Fly Ash Phosphogypsum Binder. Constr Build Mater. 2007, 21, 1480–1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
dc.relation.references[17] Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. Investigation on the Application of Steel Slag–Fly Ash–Phosphogypsum Solidified Material as Road Base Material. J. Hazard. Mater. 2009, 164, 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
dc.relation.references[18] Orlovskyy, V.; Malovanyy, M.; Bileckyy, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599–607. https://doi.org/10.23939/chcht15.04.599
dc.relation.references[19] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Research of Lime-Ash Plugging Mixtures. Chem. Chem. Technol. 2022, 16, 621–629. https://doi.org/10.23939/chcht16.04.621
dc.relation.references[20] Dzhumelia, E.A. Ekolohichna bezpeka hirnycho-khimichnoho pidpryyemstva na stadii likvidatsii. Ph.D. Thesis [Online]; Lviv Polytechnic National University: Lviv, 2020. https://ena.lpnu.ua/handle/ntb/56155 (accessed Aug 7, 2023).
dc.relation.references[21] Dvorkin, L.I. Budivelni viazhuchi materialy; Kondor: Rivne, 2019; pp. 472–477.
dc.relation.references[22] DSTU B V. 2.7-2-93 (National Standard of Ukraine) Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones.
dc.relation.references[23] DSTU B EN 197-1:2015 (National Standard of Ukraine) Cement. Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011, IDT).
dc.relation.references[24] DSTU 8977:2020 (National Standard of Ukraine) Road Materials, Produced by cold recycling technology. Test methods.
dc.relation.references[25] DSTU 9177-3:2022 (National Standard of Ukraine) Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders.
dc.relation.references[26] Yefimenko, A.S. Pidvyshchennya vodostiikosti hipsu polifraktsiinymi mineralnymy dobavkamy. Ph.D. Thesis, Ukrainian State University of Railway Transport: Kharkiv, 2021.
dc.relation.references[27] Ye, H.; Chen, Z.; Huang, L. Mechanism of Sulfate Attack on Alkali-Activated Slag: The Role of Activator Composition. Cem Concr Res 2019, 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868
dc.relation.references[28] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. EasternEuropean J. Enterp. Technol. 2019, 4, 39–47. https://doi.org/10.15587/1729-4061.2019.175472
dc.relation.references[29] Krivenko, P.; Sanytsky M.; Kropyvnytska T. Alkali-Sulfate Activated Blended Porland Cements. Solid State Phenom. 2018, 276, 9–14. https://doi.org/10.4028/www.scientific.net/SSP.276.9
dc.relation.references[30] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak, O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13, 510–517 https://doi.org/10.23939/chcht13.04.510
dc.relation.references[31] Solodkyy, S.J.; Novytskyi, Y.L.; Topylko, N.I.; Turba, Y.V. Research of Influence of Polymer Additives-Stabilizers on Physical Mechanical Indicators and Microstructure of Cement Ground. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 708, 012107. https://doi.org/10.1088/1757-899X/708/1/012107
dc.relation.referencesen[1] Ivashchenko, T.; Ince, I. Ecological Aspects of Phosphogypsum Utilization Technologies. Visnyk of Chernihiv State Technological University 2014, 2, 223–228. http://ir.stu.cn.ua/123456789/7462
dc.relation.referencesen[2] Chernysh, Ye.Yu.; Vaskin, R.A.; Yakhnenko, O.M. Rozrobka ekolohichno bezpechnykh tekhnolohichnykh rishen utylizatsii fosfohipsu v tekhnolohiiakh zakhystu navkolyshnoho seredovyshcha. Ecological Safety and Balanced Use of Resources 2017, 2, 140–147. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/166
dc.relation.referencesen[3] Malanchuk, Z.R.; Korniienko, V.Ya.; Vasylchuk, O.Yu.; Zaiets, V.V. Problemy pererobky ta vyluchennia ridkozemelnykh metaliv z tekhnohennykh rodovyshch fosfohipsu. Science and Education a New Dimension. Natural and Technical Sciences 2018, 179, 55–58. https://doi.org/10.31174/SEND-NT2018-179VI21-14
dc.relation.referencesen[4] Malanchuk, Z.; Korniyenko, V.; Malanchuk, Y.; Khrystyuk, A. Results of Experimental Studies of Amber Extraction by Hydrome chanical Method in Ukraine. EasternEuropean J. Enterp. Technol. 2016, 3, 24–28 https://doi.org/10.15587/1729-4061.2016.72404
dc.relation.referencesen[5] Malanchuk, Z.; Malanchuk, Y.; Korniyenko, V.; Ignatyuk, I. Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. EasternEuropean J. Enterp. Technol. 2017, 1, 45–51. https://doi.org/10.15587/1729-4061.2017.92638
dc.relation.referencesen[6] Yakhnenko, O.M.; Chernysh, Ye.Yu.; Pliatsuk, L.D.; Trunova, I.O. Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources 2015, 1, 110–119. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/214
dc.relation.referencesen[7] Tsioka, M.; Voudrias, E. A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386
dc.relation.referencesen[8] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry. Chem. Chem. Technol. 2023, 17, 666–673 https://doi.org/10.23939/chcht17.03.666
dc.relation.referencesen[9] Chaimaâ, D.A.; Khaled, L.; Amina, A.; Kamal, E.O. Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. J. Mater. Sci. Eng. A. 2022, 12, 115–130. https://doi.org/10.17265/2161-6213/2022.10-12.002
dc.relation.referencesen[10] Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18–22. https://doi.org/10.2478/v10026-011-0018-5
dc.relation.referencesen[11] Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K. E.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Materials Today: Proceedings 2022, 58, 1054-1058. https://doi.org/10.1016/j.matpr.2022.01.084
dc.relation.referencesen[12] Malkawi, D.A.; Rabab'ah, S.R.; AlSyouf, M.M.; Aldeeky,H. Utilizing Expansive Soil Treated with Phosphogypsum and Lime in Pavement Construction. Results in Engineering 2023, 19, 101256. https://doi.org/10.1016/j.rineng.2023.101256
dc.relation.referencesen[13] Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267
dc.relation.referencesen[14] Meskini, S.; Samdi, A.; Ejjaouani, H.; Remmal, T. Valorization of Phosphogypsum as a Road Material: Stabilizing Effect of Fly Ash and Lime Additives on Strength and Durability. J. Clean. Prod. 2021, 323, 129161. https://doi.org/10.1016/j.jclepro.2021.129161
dc.relation.referencesen[15] Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A Phosphogypsum-Based Road Material with Enhanced Mechanical Properties for Sustainable Environmental Remediation. Environ. Prog. Sustainable Energy 2022, 41, e13732. https://doi.org/10.1002/ep.13732
dc.relation.referencesen[16] Shen, W.; Zhou, M.; Zhao, Q. Study on Lime–Fly Ash Phosphogypsum Binder. Constr Build Mater. 2007, 21, 1480–1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
dc.relation.referencesen[17] Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. Investigation on the Application of Steel Slag–Fly Ash–Phosphogypsum Solidified Material as Road Base Material. J. Hazard. Mater. 2009, 164, 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
dc.relation.referencesen[18] Orlovskyy, V.; Malovanyy, M.; Bileckyy, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599–607. https://doi.org/10.23939/chcht15.04.599
dc.relation.referencesen[19] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Research of Lime-Ash Plugging Mixtures. Chem. Chem. Technol. 2022, 16, 621–629. https://doi.org/10.23939/chcht16.04.621
dc.relation.referencesen[20] Dzhumelia, E.A. Ekolohichna bezpeka hirnycho-khimichnoho pidpryyemstva na stadii likvidatsii. Ph.D. Thesis [Online]; Lviv Polytechnic National University: Lviv, 2020. https://ena.lpnu.ua/handle/ntb/56155 (accessed Aug 7, 2023).
dc.relation.referencesen[21] Dvorkin, L.I. Budivelni viazhuchi materialy; Kondor: Rivne, 2019; pp. 472–477.
dc.relation.referencesen[22] DSTU B V. 2.7-2-93 (National Standard of Ukraine) Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones.
dc.relation.referencesen[23] DSTU B EN 197-1:2015 (National Standard of Ukraine) Cement. Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011, IDT).
dc.relation.referencesen[24] DSTU 8977:2020 (National Standard of Ukraine) Road Materials, Produced by cold recycling technology. Test methods.
dc.relation.referencesen[25] DSTU 9177-3:2022 (National Standard of Ukraine) Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders.
dc.relation.referencesen[26] Yefimenko, A.S. Pidvyshchennya vodostiikosti hipsu polifraktsiinymi mineralnymy dobavkamy. Ph.D. Thesis, Ukrainian State University of Railway Transport: Kharkiv, 2021.
dc.relation.referencesen[27] Ye, H.; Chen, Z.; Huang, L. Mechanism of Sulfate Attack on Alkali-Activated Slag: The Role of Activator Composition. Cem Concr Res 2019, 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868
dc.relation.referencesen[28] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. EasternEuropean J. Enterp. Technol. 2019, 4, 39–47. https://doi.org/10.15587/1729-4061.2019.175472
dc.relation.referencesen[29] Krivenko, P.; Sanytsky M.; Kropyvnytska T. Alkali-Sulfate Activated Blended Porland Cements. Solid State Phenom. 2018, 276, 9–14. https://doi.org/10.4028/www.scientific.net/SSP.276.9
dc.relation.referencesen[30] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak, O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13, 510–517 https://doi.org/10.23939/chcht13.04.510
dc.relation.referencesen[31] Solodkyy, S.J.; Novytskyi, Y.L.; Topylko, N.I.; Turba, Y.V. Research of Influence of Polymer Additives-Stabilizers on Physical Mechanical Indicators and Microstructure of Cement Ground. IOP Conf. Ser., Mater. Sci. Eng. 2019, 708, 012107. https://doi.org/10.1088/1757-899X/708/1/012107
dc.relation.urihttp://ir.stu.cn.ua/123456789/7462
dc.relation.urihttps://ebzr.nung.edu.ua/index.php/ebzr/article/view/166
dc.relation.urihttps://doi.org/10.31174/SEND-NT2018-179VI21-14
dc.relation.urihttps://doi.org/10.15587/1729-4061.2016.72404
dc.relation.urihttps://doi.org/10.15587/1729-4061.2017.92638
dc.relation.urihttps://ebzr.nung.edu.ua/index.php/ebzr/article/view/214
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2020.121386
dc.relation.urihttps://doi.org/10.23939/chcht17.03.666
dc.relation.urihttps://doi.org/10.17265/2161-6213/2022.10-12.002
dc.relation.urihttps://doi.org/10.2478/v10026-011-0018-5
dc.relation.urihttps://doi.org/10.1016/j.matpr.2022.01.084
dc.relation.urihttps://doi.org/10.1016/j.rineng.2023.101256
dc.relation.urihttps://doi.org/10.1016/j.jobe.2020.101267
dc.relation.urihttps://doi.org/10.1016/j.jclepro.2021.129161
dc.relation.urihttps://doi.org/10.1002/ep.13732
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2006.07.010
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2008.07.125
dc.relation.urihttps://doi.org/10.23939/chcht15.04.599
dc.relation.urihttps://doi.org/10.23939/chcht16.04.621
dc.relation.urihttps://ena.lpnu.ua/handle/ntb/56155
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.105868
dc.relation.urihttps://doi.org/10.15587/1729-4061.2019.175472
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/SSP.276.9
dc.relation.urihttps://doi.org/10.23939/chcht13.04.510
dc.relation.urihttps://doi.org/10.1088/1757-899X/708/1/012107
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Novytskyi Y., Topylko N., Marushchak U., Turba Y., 2024
dc.subjectфосфогіпс
dc.subjectмелений гранульований доменний шлак
dc.subjectпортландцемент
dc.subjectкомпозитні матеріали
dc.subjectоснова дорожнього покриття
dc.subjectPhosphogypsum
dc.subjectground granulated blast furnace slag
dc.subjectPortland cement
dc.subjectcomposite material
dc.subjectconstructive layers of road pavement
dc.titleComposite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement
dc.title.alternativeКомпозиційні матеріали на основі фосфогіпсу для конструктивних шарів дорожнього одягу
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v18n1_Novytskyi_Y-Composite_Materials_Based_7-15.pdf
Size:
6.16 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v18n1_Novytskyi_Y-Composite_Materials_Based_7-15__COVER.png
Size:
613.46 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: