Optimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols

dc.citation.epage73
dc.citation.issue1
dc.citation.spage66
dc.contributor.affiliationUniversiti Teknologi MARA Cawangan Pulau Pinang
dc.contributor.affiliationUniversiti Teknologi MARA Cawangan Terengganu
dc.contributor.affiliationUniversiti Teknologi MARA Cawangan Johor
dc.contributor.affiliationUniversiti Sains
dc.contributor.authorJalil, Mohd Jumain
dc.contributor.authorRasnan, Nurul Hasna Asniera
dc.contributor.authorYamin, Aliff Farhan Mohd
dc.contributor.authorZaini, Mohd Saufi Md
dc.contributor.authorMorad, Norhasimah
dc.contributor.authorAzmi, Intan Suhada
dc.contributor.authorMahadi, Mahazmi Burhanudin
dc.contributor.authorYeop, Mohamad Zarqani
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T10:41:36Z
dc.date.available2024-01-22T10:41:36Z
dc.date.created2022-03-16
dc.date.issued2022-03-16
dc.description.abstractЗа допомогою методу крутого сходження (методу RSM) на основі трирівневого трифакторного експерименту (CCD) проведено оптимізацію процесу епоксидування. З метою визначення оптимальних умов реакції для отримання поліолів вивчено відгук відносного вмісту оксирану (%RCO). Прогнозоване значення моделі (85 %) відмінно узгоджувалось з експериментальним значенням (81 %). Встановлено, що всі параметри (температура, молярне співвідношення мурашиної кислоти до олеїнової кислоти та пероксиду водню до олеїнової кислоти) мали суттєвий вплив на хід реакції епоксидування (р < 0,05). Показано, що взаємодія між усіма параметрами має велике значення і при р < 0,0001. За методом RSM встановлені оптимальні умови реакції: температура 318 К, молярне співвідношення мурашиної кислоти до олеїнової кислоти 1,64:1 та молярне співвідношення пероксиду водню до олеїнової кислоти 2:1. Епоксидування пальмової олеїнової кислоти здійснювалося з використанням in situ пероксимурашиної кислоти. За допомогою Фур‘є-спектроскопії доведено утворення епоксидних функціональних груп за оптимальних умов реакції при довжині хвилі 1340 см-1. Ця епоксидна група була використана для отримання поліолів за допомогою процесу гідроксилювання, а функціональна група поліолів була виявлена при довжині хвилі 816 см-1.
dc.description.abstractOptimization of epoxidation by using response surface methodology (RSM) based on three-level three-factorial central composite design (CCD) was used. Response percentage of relative oxirane content (%RCO) was studied to determine the optimum reaction condition for production of polyols. The predicted value of model (85 %) was excellent in accordance to experimental value (81 %). All parameters (temperature, molar ratio of formic acid to oleic acid and molar ratio of hydrogen peroxide to oleic acid) were significant in influencing the course of epoxidation reaction (p < 0.05). The interaction between all parameters is also highly significant with p < 0.0001. Optimum reaction conditions obtained from RSM were as follows: the temperature 318 K, molar ratio of formic acid to oleic acid 1.64:1 and molar ratio of hydrogen peroxide to oleic acid 2:1. The epoxidation of palm oleic acid was carried out by using in situ performic acid. FTIR analysis showed the formation of epoxy functional groups at optimum reaction condition at the wavelength of 1340 cm-1. This epoxide group was used to produce polyols by using hydroxylation process and the polyols functional group was detected at the wavelength of 816 cm-1.
dc.format.extent66-73
dc.format.pages8
dc.identifier.citationOptimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols / Mohd Jumain Jalil, Nurul Hasna Asniera Rasnan, Aliff Farhan Mohd Yamin, Mohd Saufi Md Zaini, Norhasimah Morad, Intan Suhada Azmi, Mahazmi Burhanudin Mahadi, Mohamad Zarqani Yeop // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 66–73.
dc.identifier.citationenOptimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols / Mohd Jumain Jalil, Nurul Hasna Asniera Rasnan, Aliff Farhan Mohd Yamin, Mohd Saufi Md Zaini, Norhasimah Morad, Intan Suhada Azmi, Mahazmi Burhanudin Mahadi, Mohamad Zarqani Yeop // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 16. — No 1. — P. 66–73.
dc.identifier.doidoi.org/10.23939/chcht16.01.066
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60962
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 1 (16), 2022
dc.relation.references[1] Taude, Saurabh; Patnaik, M.; Bhagt, S.L.; Renge, V.C. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2011, II, 491-501.
dc.relation.references[2] Bauman, Z.A. Natural History of Evil; Polity Press, 2011.
dc.relation.references[3] Hong, L.K.; Yusop, R.M.; Salih, N.; Salimon, J. Optimization of the in-situ Epoxidation of Linoleic Acid of Jatropha Curcas Oil with Performic Acid. Malaysian J. Anal. Sci. 2015, 19, 144-154.
dc.relation.references[4] Lu, H.; Sun, S.; Bi, Y.; Yang, G. Enzymatic Epoxidation of Biodiesel Optimized by Response Surface Methodology. African J. Biotechnol. 2012, 11, 12356-12363. https://doi.org/10.5897/AJB11.3831
dc.relation.references[5] Khoon Poh, A.; Choy Sin, L.; Sit Foon, C.; Cheng Hock, C. Polyurethane Wood Adhesive from Palm Oil-Based Polyester Polyol. J. Adh. Sci. Technol. 2014, 28, 1020-1033. https://doi.org/10.1080/01694243.2014.883772
dc.relation.references[6] Hatchett, D.W., Kodippili, G., Kinyanjui, J.M.; Benincasa, F.; Sapochak, L. FTIR Analysis of Thermally Processed PU Foam. Polym. Degrad. Stab. 2005, 87, 555-561. https://doi.org/10.1016/j.polymdegradstab.2004.10.012
dc.relation.references[7] Alagi, P.; Ghorpade, R.; Jang, J.H.; Patil, C.; Jirimali, H.; Gite V.; Hong, S.C. Functional Soybean Oil-Based Polyols as Sustainable Feedstocks for Polyurethane Coatings. Ind. Crops Prod. 2018, 113, 249-258. https://doi.org/10.1016/j.indcrop.2018.01.041
dc.relation.references[8] Boustead, I. Eco-profiles of the European Plastics Industry: Polyether Polyol.; a Report for Plastics Europe; PlasticsEurope: Brussels, March 2005.
dc.relation.references[9] Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic Model Describing Soybean Oil Epoxidation with H2O2 in a Fed-Batch Reactor. Chem. Eng. J. 2011, 173, 198-209. https://doi.org/10.1016/j.cej.2011.05.018
dc.relation.references[10] Jalil, M.J.; Mohamed, N.; Jamaludin, S.K.; Som, A.M.; Mohamad Daud, A.R. Epoxidation of Palm Kernel Oil-Based Crude Oleic Acid. Adv. Mater. Res. 2014, 906, 125-130. https://doi.org/10.4028/www.scientific.net/AMR.906.125
dc.relation.references[11] Derawi, D.; Salimon, J. Optimization on Epoxidation of Palm Olein by Using Performic Acid. J. Chem. 2010, 7, Article ID 384948. https://doi.org/10.1155/2010/384948
dc.relation.references[12] Rama Rao, S., Padmanabhan, G. Application of Taguchi Methods and ANOVA in Optimization of Process Parameters for Metal Removal Rate in Electrochemical Machining of Al/5%SiC Composites. Int. J. Eng. Res. 2012, 2, 192-197.
dc.relation.references[13] Amini, M.; Younesi, H.; Bahramifar, N.; Zinatizadeh, A.A.; Ghorbani F.; Daneshi, A.; Sharifzadeh, M. Application of Response Surface Methodology for Optimization of Lead Biosorption in an Aqueous Solution by Aspergillus Niger. J. Hazard. Mater. 2008, 154, 694-702. https://doi.org/10.1016/j.jhazmat.2007.10.114
dc.relation.references[14] Kim, H.K.; Kim J.G.; Cho J.D.; Hong J.W. Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology. Polym. Test. 2003, 22, 899-906. https://doi.org/10.1016/S0142-9418(03)00038-2
dc.relation.references[15] Muthukumar, M.; Mohan, D.; Rajendran, M. Optimization of Mix Proportions of Mineral Aggregates Using Box Behnken Design of Experiments. Cem. Concr. Compos. 2003, 25, 751-758. https://doi.org/10.1016/S0958-9465(02)00116-6
dc.relation.references[16] Dinda, S.; Patwardhan, A.V.; Goud, V.V.; Pradhan, N.C. Epoxidation of Cottonseed Oil by Aqueous Hydrogen Peroxide Catalysed by Liquid Inorganic Acids. Biores. Technol. 2008, 99, 3737-3744. https://doi.org/10.1016/j.biortech.2007.07.015
dc.relation.references[17] Lee, P.L.; Wan Yunus, W.M.Z.; Yeong, S.K.; Dzulkefly Kuang, A.; Lim, W.H. Optimization of The Epoxidation of Methyl Ester of Palm Fatty Acid Distillate. J. Oil Palm Res. 2009, 21, 675-682.
dc.relation.references[18] Derouet D. and Brosse J.: Comparative Study of The Epoxidation of Natural and Synthetic Rubber Latices. J. Rubb. Res., 2006, 9 (1), 1-20.
dc.relation.references[19] Statistik Indonesia 2014; Katalog BPS, Vol. XXXIII, No.2, pp 81–87.
dc.relation.references[20] Mushtaq, M.; Tan, I.M.; Nadeem, M.; Devi, C.; Lee, S.Y.C.; Sagir M.; Rashid, U. Epoxidation of Methyl Esters Derived from Jatropha Oil: An Optimization Study. Grasas y Aceites, 2013, 64, 103-114. https://doi.org/10.3989/gya.084612
dc.relation.references[21] Fong, M.N.F.; Salimon, J. Epoxidation of Palm Kernel Oil Fatty Acids. J. Sci. Technol. 2012, 4, 87-98. Retrieved from https://penerbit.uthm.edu.my/ojs/index.php/JST/article/view/605
dc.relation.references[22] Jalil, M.J.; Jamaludin, S.K; Rafizan, A.; Daud M. Degradation Oxirane Ring Kinetics of Epoxidized Palm Kernel Oil-Based Crude Oleic Acid. Chem. Chem. Technol., 2018, 12, 296-299. https://doi.org/10.23939/chcht12.03.296
dc.relation.referencesen[1] Taude, Saurabh; Patnaik, M.; Bhagt, S.L.; Renge, V.C. Epoxidation of Vegetable Oils: A Review. Int. J. Adv. Eng. Technol. 2011, II, 491-501.
dc.relation.referencesen[2] Bauman, Z.A. Natural History of Evil; Polity Press, 2011.
dc.relation.referencesen[3] Hong, L.K.; Yusop, R.M.; Salih, N.; Salimon, J. Optimization of the in-situ Epoxidation of Linoleic Acid of Jatropha Curcas Oil with Performic Acid. Malaysian J. Anal. Sci. 2015, 19, 144-154.
dc.relation.referencesen[4] Lu, H.; Sun, S.; Bi, Y.; Yang, G. Enzymatic Epoxidation of Biodiesel Optimized by Response Surface Methodology. African J. Biotechnol. 2012, 11, 12356-12363. https://doi.org/10.5897/AJB11.3831
dc.relation.referencesen[5] Khoon Poh, A.; Choy Sin, L.; Sit Foon, C.; Cheng Hock, C. Polyurethane Wood Adhesive from Palm Oil-Based Polyester Polyol. J. Adh. Sci. Technol. 2014, 28, 1020-1033. https://doi.org/10.1080/01694243.2014.883772
dc.relation.referencesen[6] Hatchett, D.W., Kodippili, G., Kinyanjui, J.M.; Benincasa, F.; Sapochak, L. FTIR Analysis of Thermally Processed PU Foam. Polym. Degrad. Stab. 2005, 87, 555-561. https://doi.org/10.1016/j.polymdegradstab.2004.10.012
dc.relation.referencesen[7] Alagi, P.; Ghorpade, R.; Jang, J.H.; Patil, C.; Jirimali, H.; Gite V.; Hong, S.C. Functional Soybean Oil-Based Polyols as Sustainable Feedstocks for Polyurethane Coatings. Ind. Crops Prod. 2018, 113, 249-258. https://doi.org/10.1016/j.indcrop.2018.01.041
dc.relation.referencesen[8] Boustead, I. Eco-profiles of the European Plastics Industry: Polyether Polyol.; a Report for Plastics Europe; PlasticsEurope: Brussels, March 2005.
dc.relation.referencesen[9] Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic Model Describing Soybean Oil Epoxidation with H2O2 in a Fed-Batch Reactor. Chem. Eng. J. 2011, 173, 198-209. https://doi.org/10.1016/j.cej.2011.05.018
dc.relation.referencesen[10] Jalil, M.J.; Mohamed, N.; Jamaludin, S.K.; Som, A.M.; Mohamad Daud, A.R. Epoxidation of Palm Kernel Oil-Based Crude Oleic Acid. Adv. Mater. Res. 2014, 906, 125-130. https://doi.org/10.4028/www.scientific.net/AMR.906.125
dc.relation.referencesen[11] Derawi, D.; Salimon, J. Optimization on Epoxidation of Palm Olein by Using Performic Acid. J. Chem. 2010, 7, Article ID 384948. https://doi.org/10.1155/2010/384948
dc.relation.referencesen[12] Rama Rao, S., Padmanabhan, G. Application of Taguchi Methods and ANOVA in Optimization of Process Parameters for Metal Removal Rate in Electrochemical Machining of Al/5%SiC Composites. Int. J. Eng. Res. 2012, 2, 192-197.
dc.relation.referencesen[13] Amini, M.; Younesi, H.; Bahramifar, N.; Zinatizadeh, A.A.; Ghorbani F.; Daneshi, A.; Sharifzadeh, M. Application of Response Surface Methodology for Optimization of Lead Biosorption in an Aqueous Solution by Aspergillus Niger. J. Hazard. Mater. 2008, 154, 694-702. https://doi.org/10.1016/j.jhazmat.2007.10.114
dc.relation.referencesen[14] Kim, H.K.; Kim J.G.; Cho J.D.; Hong J.W. Optimization and Characterization of UV-Curable Adhesives for Optical Communications by Response Surface Methodology. Polym. Test. 2003, 22, 899-906. https://doi.org/10.1016/S0142-9418(03)00038-2
dc.relation.referencesen[15] Muthukumar, M.; Mohan, D.; Rajendran, M. Optimization of Mix Proportions of Mineral Aggregates Using Box Behnken Design of Experiments. Cem. Concr. Compos. 2003, 25, 751-758. https://doi.org/10.1016/S0958-9465(02)00116-6
dc.relation.referencesen[16] Dinda, S.; Patwardhan, A.V.; Goud, V.V.; Pradhan, N.C. Epoxidation of Cottonseed Oil by Aqueous Hydrogen Peroxide Catalysed by Liquid Inorganic Acids. Biores. Technol. 2008, 99, 3737-3744. https://doi.org/10.1016/j.biortech.2007.07.015
dc.relation.referencesen[17] Lee, P.L.; Wan Yunus, W.M.Z.; Yeong, S.K.; Dzulkefly Kuang, A.; Lim, W.H. Optimization of The Epoxidation of Methyl Ester of Palm Fatty Acid Distillate. J. Oil Palm Res. 2009, 21, 675-682.
dc.relation.referencesen[18] Derouet D. and Brosse J., Comparative Study of The Epoxidation of Natural and Synthetic Rubber Latices. J. Rubb. Res., 2006, 9 (1), 1-20.
dc.relation.referencesen[19] Statistik Indonesia 2014; Katalog BPS, Vol. XXXIII, No.2, pp 81–87.
dc.relation.referencesen[20] Mushtaq, M.; Tan, I.M.; Nadeem, M.; Devi, C.; Lee, S.Y.C.; Sagir M.; Rashid, U. Epoxidation of Methyl Esters Derived from Jatropha Oil: An Optimization Study. Grasas y Aceites, 2013, 64, 103-114. https://doi.org/10.3989/gya.084612
dc.relation.referencesen[21] Fong, M.N.F.; Salimon, J. Epoxidation of Palm Kernel Oil Fatty Acids. J. Sci. Technol. 2012, 4, 87-98. Retrieved from https://penerbit.uthm.edu.my/ojs/index.php/JST/article/view/605
dc.relation.referencesen[22] Jalil, M.J.; Jamaludin, S.K; Rafizan, A.; Daud M. Degradation Oxirane Ring Kinetics of Epoxidized Palm Kernel Oil-Based Crude Oleic Acid. Chem. Chem. Technol., 2018, 12, 296-299. https://doi.org/10.23939/chcht12.03.296
dc.relation.urihttps://doi.org/10.5897/AJB11.3831
dc.relation.urihttps://doi.org/10.1080/01694243.2014.883772
dc.relation.urihttps://doi.org/10.1016/j.polymdegradstab.2004.10.012
dc.relation.urihttps://doi.org/10.1016/j.indcrop.2018.01.041
dc.relation.urihttps://doi.org/10.1016/j.cej.2011.05.018
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.906.125
dc.relation.urihttps://doi.org/10.1155/2010/384948
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2007.10.114
dc.relation.urihttps://doi.org/10.1016/S0142-9418(03)00038-2
dc.relation.urihttps://doi.org/10.1016/S0958-9465(02)00116-6
dc.relation.urihttps://doi.org/10.1016/j.biortech.2007.07.015
dc.relation.urihttps://doi.org/10.3989/gya.084612
dc.relation.urihttps://penerbit.uthm.edu.my/ojs/index.php/JST/article/view/605
dc.relation.urihttps://doi.org/10.23939/chcht12.03.296
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.rights.holder© Jalil M. J., Rasnan N. H. A., Yamin A. F. M., Zaini Md M. S., Morad N., Azmi I. S., Mahadi M. B., Yeop M. Z., 2022
dc.subjectтемпература
dc.subjectмольне співвідношення
dc.subjectмурашина кислота
dc.subjectпероксид водню
dc.subjectепоксидування
dc.subjectполіоли
dc.subjecttemperature
dc.subjectmolar ratio
dc.subjectformic acid
dc.subjecthydrogen peroxide
dc.subjectepoxidation
dc.subjectpolyols
dc.titleOptimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols
dc.title.alternativeОптимізація процесу епоксидування пальмової олеїнової кислоти для одержання поліолів
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2022v16n1_Jalil_M_J-Optimization_of_Epoxidation_66-73.pdf
Size:
589.13 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2022v16n1_Jalil_M_J-Optimization_of_Epoxidation_66-73__COVER.png
Size:
527.38 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: