Дослідження використання методів ДЗЗ для моніторингу та картографування торфовищ

dc.citation.epage211
dc.citation.issueІ(49)
dc.citation.journalTitleСучасні досягнення геодезичної науки та виробництва : збірник наукових праць
dc.citation.spage201
dc.contributor.affiliationВолинський національний університет імені Лесі Українки
dc.contributor.affiliationВолинський національний університет імені Лесі Українки
dc.contributor.affiliationВолинський національний університет імені Лесі Українки
dc.contributor.affiliationВолинський національний університет імені Лесі Українки
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLesya Ukrainka Volyn National University
dc.contributor.affiliationLesya Ukrainka Volyn National University
dc.contributor.affiliationLesya Ukrainka Volyn National University
dc.contributor.affiliationLesya Ukrainka Volyn National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorРасюн, В.
dc.contributor.authorВолошин, В.
dc.contributor.authorРудик, О.
dc.contributor.authorМельник, О.
dc.contributor.authorВовк, А.
dc.contributor.authorRasyun, V.
dc.contributor.authorVoloshyn, V.
dc.contributor.authorRudyk, O.
dc.contributor.authorMelnyk, O.
dc.contributor.authorVovk, A.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-11T13:01:52Z
dc.date.created2025-05-21
dc.date.issued2025-05-21
dc.description.abstractВзаємодія між гідрологічною динамікою, характеристиками рослинності та кругообігом вуглецю критично важлива для підтримки екосистем торфовищ і навколишнього середовища загалом. Дослідження таких екосис- тем можливе на різних рівнях, територіях із використанням окремих якісних і кількісних характеристик. Дані ДЗЗ надають широкий спектр інформації про об’єкти території як загалом, так і за окремими показниками. Такі дослідження екосистем із використанням даних ДЗЗ набули актуальності у світі, тому аналіз методів досліджень, згадуваних у сучасних публікаціях, – завдання своєчасне. Мета. Здійснити огляд літератури стосовно викорис- тання методів оброблення різночасових гіпер- та мультиспектральних даних різних систем ДЗЗ, радарних даних із синтезованою апертурою (SAR), даних LiDAR та даних безпілотних літальних апаратів (БПЛА) для монітори- нгу і картографування рослинності та біорізноманіття торфовищ у світі впродовж 2000–2024 рр. Методика. Для аналізу актуальних публікацій використано комбінації ключових термінів та їхніх синонімів, пов’язаних із тор- фовищами, дистанційним зондуванням та моніторингом Землі, у наукометричній базі Web of Science. Аналіз публікацій передбачав зосередження уваги на дослідженнях із використанням супутникових, бортових даних або даних БПЛА для картографування та моніторингу торфовищ. Отриманий набір праць проаналізовано для визна- чення основних напрямів досліджень торфовищ із використанням даних ДЗЗ. Результати. Розглянуто останні досягнення у технологіях дистанційного зондування, ураховуючи супутникові, повітряні дані та дані БПЛА, а також їх використання для картографування і моніторингу торфовищ. Аналіз охоплює оцінку ефективності цих методів для ідентифікації різних видів рослин, моніторингу стану рослинності та виявлення змін у біорізнома- нітті. Огляд зосереджено на можливостях дистанційного зондування для точного картографування біорізнома- ніття рослинного покриву торфовищ. У статті детально розглянуто проблеми та обмеження поточних підходів дистанційного зондування, а також пропозиції щодо майбутніх досліджень для покращення моніторингу торфо- вищ. Практична значущість. Розширюючи окреслені напрями досліджень, зусилля з моніторингу стану торфо- вищ ми спрямували на підвищення просторової та часової роздільної здатності даних за рахунок їх інтеграції з різних джерел. Ця інтеграція націлена на виявлення дрібних і швидких змін в ареалах торфовищ. Інший підхід – перехресна оцінка та розширення можливостей масштабування ареалів торфовищ. У цьому напрямі наведено результати картографування функціональних типів рослин (Plant Functional Types) і мікроформ за допомогою даних БПЛА, які показують, що характеристики рослинності істотно впливають на мінімальну просторову роз- дільну здатність даних ДЗЗ, необхідну для точного визначення мікроформ. Проаналізувавши дослідження карто- графування функціональних типів рослин (Plant Functional Types), ми визначили, що необхідна роздільна здат- ність даних ДЗЗ мінімум 0,25 м.
dc.description.abstractThe interaction between hydrological dynamics, vegetation characteristics and carbon cycling is critical for the maintenance of peatland ecosystems and the environment in general. The study of such ecosystems is possible at different levels and territories using separate qualitative and quantitative characteristics. Remote sensing data provide a wide range of information about the objects of the territory both in general and by individual indicators. Such studies of ecosystems using remote sensing data have gained relevance in the world, so the analysis of such research methods mentioned in modern publications is a timely task. Objective. To review the literature on the use of methods for processing multitemporal hyperspectral and multispectral data from different remote sensing systems, synthetic aperture radar (SAR) data, LiDAR data, and UAV data for monitoring and mapping peatland vegetation and biodiversity in the world during 2000–2024. Methods. To analyse relevant publications, we used combinations of key terms and their synonyms related to peatlands, remote sensing and Earth monitoring in the Web of Science scientific and metric database. The analysis of publications included a focus on studies using satellite, on-board or unmanned aerial vehicle (UAV) data for peatland mapping and monitoring. This set of papers was analysed to identify the main areas of peatland research using remote sensing data. Results. The latest advances in remote sensing technologies, including satellite, airborne and UAV data, and their use for peatland mapping and monitoring are reviewed. The analysis includes an assessment of the effectiveness of these methods in identifying different plant species, monitoring vegetation conditions and detecting changes in biodiversity. The review focuses on the possibilities of remote sensing for accurate mapping of peatland vegetation biodiversity. The article discusses in detail the problems and limitations of current remote sensing approaches, as well as suggestions for future research to improve peatland monitoring. Practical significance. Expanding on the presented research areas, peatland monitoring efforts are focused on improving the spatial and temporal resolution of data by integrating them from different sources. This integration is aimed at detecting small and rapid changes in peatland habitats. Another approach is to cross-validate and improve the scaling capabilities of peatland areas. In this direction, we present the results of mapping plant functional types (Plant Functional Typess) and microforms using UAV data, which showed that vegetation characteristics significantly affect the required minimum spatial resolution of remote sensing data, which is necessary for accurate microform detection. The analysed studies of plant functional types (Plant Functional Types) mapping have shown that the required resolution of remote sensing data is at least 0.25 m
dc.format.extent201-211
dc.format.pages11
dc.identifier.citationДослідження використання методів ДЗЗ для моніторингу та картографування торфовищ / Расюн В., Волошин В., Рудик О., Мельник О., Вовк А. // Сучасні досягнення геодезичної науки та виробництва : збірник наукових праць. — Львів : Видавництво Львівської політехніки, 2025. — № І(49). — С. 201–211.
dc.identifier.citation2015Дослідження використання методів ДЗЗ для моніторингу та картографування торфовищ / Расюн В. та ін. // Сучасні досягнення геодезичної науки та виробництва : збірник наукових праць, Львів. 2025. № І(49). С. 201–211.
dc.identifier.citationenAPARasyun, V., Voloshyn, V., Rudyk, O., Melnyk, O., & Vovk, A. (2025). Doslidzhennia vykorystannia metodiv DZZ dlia monitorynhu ta kartohrafuvannia torfovyshch [Investigating the use of remote sensing methods for monitoring and mapping peatlands]. Modern Achievements of Geodesic Science and Industry(I(49)), 201-211. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGORasyun V., Voloshyn V., Rudyk O., Melnyk O., Vovk A. (2025) Doslidzhennia vykorystannia metodiv DZZ dlia monitorynhu ta kartohrafuvannia torfovyshch [Investigating the use of remote sensing methods for monitoring and mapping peatlands]. Modern Achievements of Geodesic Science and Industry (Lviv), no I(49), pp. 201-211 [in Ukrainian].
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/118539
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofСучасні досягнення геодезичної науки та виробництва : збірник наукових праць, І(49), 2025
dc.relation.ispartofModern Achievements of Geodesic Science and Industry, І(49), 2025
dc.relation.referencesAntala, M., Juszczak, R., van der Tol, C., & Rastogi, A.
dc.relation.references(2022). Impact of climate change-induced alterations in
dc.relation.referencespeatland vegetation phenology and composition on
dc.relation.referencescarbon balance. Science of The Total Environment,827, 154294. https://doi.org/10.1016/J.SCITOTENV.2022.154294
dc.relation.referencesArasumani, M., Thiel, F., Pham, V. D., Hellmann, C.,
dc.relation.referencesKaiser, M., & van der Linden, S. (2023). Advancing
dc.relation.referencespeatland vegetation mapping by spaceborne imaging
dc.relation.referencesspectroscopy. Ecological Indicators, 154, 110665.https://doi.org/10.1016/J.ECOLIND.2023.110665
dc.relation.referencesArroyo-Mora, J. P., Kalacska, M., Soffer, R., Ifimov, G.,
dc.relation.referencesLeblanc, G., Schaaf, E. S., & Lucanus, O. (2018).
dc.relation.referencesEvaluation of phenospectral dynamics with Sentinel-2A using a bottom-up approach in a northern
dc.relation.referencesombrotrophic peatland. Remote Sensing of Environment,216, 544–560. https://doi.org/10.1016/J.RSE.2018.07.021
dc.relation.referencesArtz, R. R. E., Johnson, S., Bruneau, P., Britton, A. J.,
dc.relation.referencesMitchell, R. J., Ross, L., Donaldson-Selby, G.,
dc.relation.referencesDonnelly, D., Aitkenhead, M. J., Gimona, A., & Poggio, L. (2019). The potential for modelling
dc.relation.referencespeatland habitat condition in Scotland using long-term
dc.relation.referencesMODIS data. Science of The Total Environment, 660,429–442. https://doi.org/10.1016/J.SCITOTENV.2018.12.327
dc.relation.referencesAssiri, M., Sartori, A., Persichetti, A., Miele, C., Faelga,
dc.relation.referencesR. A., Blount, T., & Silvestri, S. (2023). Leaf Area
dc.relation.referencesIndex and aboveground biomass estimation of an
dc.relation.referencesalpine peatland with a UAV multi-sensor approach.
dc.relation.referencesGIScience & Remote Sensing, 60(1). https://doi.org/10.1080/15481603.2023.2270791
dc.relation.referencesBall, J., Gimona, A., Cowie, N., Hancock, M., Klein, D.,
dc.relation.referencesDonaldson-Selby, G., & Artz, R. R. E. (2023).
dc.relation.referencesAssessing the Potential of using Sentinel-1 and 2 or
dc.relation.referenceshigh-resolution aerial imagery data with Machine
dc.relation.referencesLearning and Data Science Techniques to Model
dc.relation.referencesPeatland Restoration Progress – a Northern Scotland
dc.relation.referencescase study. International Journal of Remote Sensing,44(9), 2885–2911. https://doi.org/10.1080/01431161.2023.2209916
dc.relation.referencesBeyer, F., Jurasinski, G., Couwenberg, J., & Grenzdörffer,
dc.relation.referencesG. (2019). Multisensor data to derive peatland
dc.relation.referencesvegetation communities using a fixed-wing unmanned
dc.relation.referencesaerial vehicle. International Journal of Remote
dc.relation.referencesSensing, 40(24), 9103–9125. https://doi.org/10.1080/01431161.2019.1580825
dc.relation.referencesBourgeau-Chavez, L. L., Endres, S., Powell, R., Battaglia,
dc.relation.referencesM. J., Benscoter, B., Turetsky, M., Kasischke, E. S.,
dc.relation.references& Banda, E. (2016). Mapping boreal peatland
dc.relation.referencesecosystem types from multitemporal radar and optical
dc.relation.referencessatellite imagery. Https://Doi.Org/10.1139/Cjfr-2016-0192, 47(4), 545–559. https://doi.org/10.1139/CJFR-2016-0192
dc.relation.referencesCole, B., McMorrow, J., & Evans, M. (2014). Spectral
dc.relation.referencesmonitoring of moorland plant phenology to identify a
dc.relation.referencestemporal window for hyperspectral remote sensing of
dc.relation.referencespeatland. ISPRS Journal of Photogrammetry and
dc.relation.referencesRemote Sensing, 90, 49–58. https://doi.org/10.1016/J.ISPRSJPRS.2014.01.010
dc.relation.referencesConnolly, J., Holden, N. M., Connolly, J., Seaquist, J. W.,
dc.relation.references& Ward, S. M. (2011). Detecting recent disturbance on
dc.relation.referencesMontane blanket bogs in the Wicklow Mountains,
dc.relation.referencesIreland using the MODIS enhanced vegetation index.
dc.relation.referencesInternational Journal of Remote Sensing, 32(9), 2377–2393. https://doi.org/10.1080/01431161003698310
dc.relation.referencesCzapiewski, S., & Szumińska, D. (2022). An overview of
dc.relation.referencesremote sensing data applications in peatland research
dc.relation.referencesbased on works from the period 2010–2021. Land,11(1), 24. https://doi.org/10.3390/LAND11010024/S1
dc.relation.referencesErudel, T., Fabre, S., Houet, T., Mazier, F., & Briottet, X.
dc.relation.references(2017). Criteria Comparison for Classifying Peatland
dc.relation.referencesVegetation Types Using In Situ Hyperspectral
dc.relation.referencesMeasurements. Remote Sensing, 9(7). https://doi.org/10.3390/rs9070748
dc.relation.referencesFAO. Peatland Mapping and Monitoring: Recommendations
dc.relation.referencesand Technical Overview. (2020). FAO.https://doi.org/https://doi.org/10.4060/ca8200en
dc.relation.referencesFranke, J., Keuck, V., & Siegert, F. (2012). Assessment of
dc.relation.referencesgrassland use intensity by remote sensing to support
dc.relation.referencesconservation schemes. Journal for Nature Conservation,20(3), 125–134. https://doi.org/10.1016/J.
dc.relation.referencesJNC.2012.02.001
dc.relation.referencesFrick, A., Steffenhagen, P., Zerbe, S., Timmermann, T., &
dc.relation.referencesSchulz, K. (2011). Monitoring of the Vegetation
dc.relation.referencesComposition in Rewetted Peatland with Iterative
dc.relation.referencesDecision Tree Classification of Satellite Imagery.
dc.relation.referencesPhotogrammetrie - Fernerkundung - Geoinformation,2011(3), 109–122. https://doi.org/10.1127/1432-8364/2011/0076
dc.relation.referencesGarisoain, R., Delire, C., Decharme, B., Ferrant, S.,
dc.relation.referencesGranouillac, F., Payre-Suc, V., & Gandois, L. (2023).
dc.relation.referencesA Study of Dominant Vegetation Phenology in a
dc.relation.referencesSphagnum Mountain Peatland Using In Situ and
dc.relation.referencesSentinel-2 Observations. Journal of Geophysical
dc.relation.referencesResearch: Biogeosciences, 128(10), e2023JG007403.https://doi.org/10.1029/2023JG007403
dc.relation.referencesHarris, A., Charnock, R., & Lucas, R. M. (2015).
dc.relation.referencesHyperspectral remote sensing of peatland floristic
dc.relation.referencesgradients. Remote Sensing of Environment, 162, 99–111. https://doi.org/10.1016/J.RSE.2015.01.029
dc.relation.referencesHilbert, D. W., Roulet, N., & Moore, T. (2000). Modelling
dc.relation.referencesand analysis of peatlands as dynamical systems.
dc.relation.referencesJournal of Ecology, 88(2), 230–242. https://doi.org/10.1046/J.1365-2745.2000.00438.X
dc.relation.referencesJulia´, J., Cabezas, J., Galleguillos, M., Valdé S, A.,
dc.relation.referencesFuentes, J. P., Rez, C. P., Perez-Quezada, J. F., Cabezas,
dc.relation.referencesC. :, Galleguillos, M., Valdés, A., Fuen-tes, J. P.,
dc.relation.referencesPérez, C., Perez-Quezada, J. F., & Peters, D. P. C.(2015). Evaluation of impacts of management in an
dc.relation.referencesanthropogenic peatland using field and remote sensing
dc.relation.referencesdata. Ecosphere, 6(12), 1–24. https://doi.org/10.1890/ES15-00232.1
dc.relation.referencesKalacska, M., Lalonde, M., & Moore, T. R. (2015).
dc.relation.referencesEstimation of foliar chlorophyll and nitrogen content in
dc.relation.referencesan ombrotrophic bog from hyperspectral data: Scaling
dc.relation.referencesfrom leaf to image. Remote Sensing of Environment,169, 270–279. https://doi.org/10.1016/J.RSE.2015.08.012
dc.relation.referencesKarlson, M., Gålfalk, M., Crill, P., Bousquet, P., Saunois,
dc.relation.referencesM., & Bastviken, D. (2019). Delineating northern
dc.relation.referencespeatlands using Sentinel-1 time series and terrain
dc.relation.referencesindices from local and regional digital elevation
dc.relation.referencesmodels. Remote Sensing of Environment, 231, 111252.
dc.relation.referenceshttps://doi.org/10.1016/J.RSE.2019.111252
dc.relation.referencesKattenborn, T., Fassnacht, F. E., Pierce, S., Lopatin, J.,
dc.relation.referencesGrime, J. P., & Schmidtlein, S. (2017). Linking plant
dc.relation.referencesstrategies and plant traits derived by radiative transfer
dc.relation.referencesmodelling. Journal of Vegetation Science, 28(4), 717–727. https://doi.org/10.1111/JVS.12525 Knoth, C., Klein, B., Prinz, T., & Kleinebecker, T. (2013).
dc.relation.referencesUnmanned aerial vehicles as innovative remote sensing
dc.relation.referencesplatforms for high-resolution infrared imagery to
dc.relation.referencessupport restoration monitoring in cut-over bogs.
dc.relation.referencesApplied Vegetation Science, 16(3), 509–517.https://doi.org/10.1111/AVSC.12024
dc.relation.referencesLees, K. J., Quaife, T., Artz, R. R. E., Khomik, M.,
dc.relation.references& Clark, J. M. (2018). Potential for using remote sensing
dc.relation.referencesto estimate carbon fluxes across northern peatlands – A
dc.relation.referencesreview. Science of The Total Environment, 615, 857–874.https://doi.org/10.1016/J.SCITOTENV.2017.09.103
dc.relation.referencesLourenco, M., Fitchett, J. M., & Woodborne, S. (2023).
dc.relation.referencesPeat definitions: A critical review. Progress in
dc.relation.referencesPhysical Geography, 47(4), 506–520. https://doi.org/10.1177/03091333221118353/ASSET/IMAGES/LARGE/10.1177_03091333221118353-FIG1.JPEG
dc.relation.referencesMcMorrow, J. M., Cutler, M. E. J., Evans, M. G., & Al-
dc.relation.referencesRoichdi, A. (2004). Hyperspectral indices for
dc.relation.referencescharacterizing upland peat composition. International
dc.relation.referencesJournal of Remote Sensing, 25(2), 313–325.https://doi.org/10.1080/0143116031000117065
dc.relation.referencesMcPartland, M. Y., Falkowski, M. J., Reinhardt, J. R.,
dc.relation.referencesKane, E. S., Kolka, R., Turetsky, M. R., Douglas,
dc.relation.referencesT. A., Anderson, J., Edwards, J. D., Palik, B.,
dc.relation.references& Montgomery, R. A. (2019). Characterizing Boreal
dc.relation.referencesPeatland Plant Composition and Species Diversity with
dc.relation.referencesHyperspectral Remote Sensing. Remote Sensing 2019,
dc.relation.referencesVol. 11, Page 1685, 11(14), 1685. https://doi.org/10.3390/RS11141685
dc.relation.referencesMerchant, M. A., Adams, J. R., Berg, A. A., Baltzer, J. L.,
dc.relation.referencesQuinton, W. L., & Chasmer, L. E. (2017).
dc.relation.referencesContributions of C-Band SAR Data and Polarimetric
dc.relation.referencesDecompositions to Subarctic Boreal Peatland
dc.relation.referencesMapping. IEEE Journal of Selected Topics in Applied
dc.relation.referencesEarth Observations and Remote Sensing, 10(4), 1467–1482. https://doi.org/10.1109/JSTARS.2016.2621043
dc.relation.referencesMiddleton, M., Närhi, P., Arkimaa, H., Hyvönen, E.,
dc.relation.referencesKuosmanen, V., Treitz, P., & Sutinen, R. (2012).
dc.relation.referencesOrdination and hyperspectral remote sensing approach
dc.relation.referencesto classify peatland biotopes along soil moisture and
dc.relation.referencesfertility gradients. Remote Sensing of Environment, 124,596–609. https://doi.org/10.1016/J.RSE.2012.06.010
dc.relation.referencesMillard, K., Kirby, P., Nandlall, S., Behnamian, A.,
dc.relation.referencesBanks, S., & Pacini, F. (2020). Using Growing-Season
dc.relation.referencesTime Series Coherence for Improved Peatland Mapping:
dc.relation.referencesComparing the Contributions of Sentinel-1 and
dc.relation.referencesRADARSAT-2 Coherence in Full and Partial Time
dc.relation.referencesSeries. Remote Sensing 2020, Vol. 12, Page 2465,12(15), 2465. https://doi.org/10.3390/RS12152465
dc.relation.referencesMinasny, B., Adetsu, D. V., Aitkenhead, M., Artz, R. R. E.,
dc.relation.referencesBaggaley, N., Barthelmes, A., Beucher, A., Caron, J.,
dc.relation.referencesConchedda, G., Connolly, J., Deragon, R., Evans, C.,
dc.relation.referencesFadnes, K., Fiantis, D., Gagkas, Z., Gilet, L., Gimona, A.,
dc.relation.referencesGlatzel, S., Greve, M. H., … Zak, D. (2023). Mapping
dc.relation.referencesand monitoring peatland conditions from global to field
dc.relation.referencesscale. Biogeochemistry 2023 167:4, 167(4), 383–425.
dc.relation.referenceshttps://doi.org/10.1007/ S10533-023-01084-1
dc.relation.referencesMinasny, B., Berglund, Ö., Connolly, J., Hedley, C., de
dc.relation.referencesVries, F., Gimona, A., Kempen, B., Kidd, D., Lilja, H.,
dc.relation.referencesMalone, B., McBratney, A., Roudier, P., O’Rourke, S.,
dc.relation.referencesRudiyanto, Padarian, J., Poggio, L., ten Caten, A.,
dc.relation.referencesThompson, D., Tuve, C., & Widyatmanti, W. (2019).
dc.relation.referencesDigital mapping of peatlands – A critical review.
dc.relation.referencesEarth-Science Reviews, 196, 102870. https://doi.org/10.1016/J.EARSCIREV.2019.05.014
dc.relation.referencesMontanarella, L., R.J.A, J., & R, H. (2006). The
dc.relation.referencesdistribution of peatland in Europe. Mires and Peat, 1.
dc.relation.referencesPflugmacher, D., Krankina, O. N., & Cohen, W. B. (2007).
dc.relation.referencesSatellite-based peatland mapping: Potential of the
dc.relation.referencesMODIS sensor. Global and Planetary Change, 56 (3–4),248–257. https://doi.org/10.1016/J.GLOPLACHA.2006.07.019
dc.relation.referencesRäsänen, A., Juutinen, S., Kalacska, M., Aurela, M.,
dc.relation.referencesHeikkinen, P., Mäenpää, K., Rimali, A., & Virtanen, T.(2020). Peatland leaf-area index and biomass
dc.relation.referencesestimation with ultra-high resolution remote sensing.
dc.relation.referencesGIScience & Remote Sensing, 57(7), 943–964.https://doi.org/10.1080/15481603.2020.1829377
dc.relation.referencesRäsänen, A., Juutinen, S., Tuittila, E. S., Aurela, M., &
dc.relation.referencesVirtanen, T. (2019). Comparing ultra-high spatial
dc.relation.referencesresolution remote-sensing methods in mapping
dc.relation.referencespeatland vegetation. Journal of Vegetation Science,30(5), 1016–1026. https://doi.org/10.1111/JVS.12769
dc.relation.referencesSchaepman-Strub, G., Limpens, J., Menken, M.,
dc.relation.referencesBartholomeus, H. M., & Schaepman, M. E. (2009).
dc.relation.referencesTowards spatial assessment of carbon sequestration in
dc.relation.referencespeatlands: Spectroscopy based estimation of fractional
dc.relation.referencescover of three plant functional types. Biogeosciences,6(2), 275–284. https://doi.org/10.5194/BG-6-275-2009
dc.relation.referencesSchmidtlein, S., Feilhauer, H., & Bruelheide, H. (2012).
dc.relation.referencesMapping plant strategy types using remote sensing.
dc.relation.referencesJournal of Vegetation Science, 23(3), 395–405.https://doi.org/10.1111/J.1654-1103.2011.01370.X
dc.relation.referencesSteenvoorden, J., Bartholomeus, H., & Limpens, J. (2023).
dc.relation.referencesLess is more: Optimizing vegetation mapping in
dc.relation.referencespeatlands using unmanned aerial vehicles (UAVs).
dc.relation.referencesInternational Journal of Applied Earth Observation
dc.relation.referencesand Geoinformation, 117, 103220. https://doi.org/10.1016/J.JAG.2023.103220
dc.relation.referencesSteenvoorden, J., & Limpens, J. (2023). Upscaling
dc.relation.referencespeatland mapping with drone-derived imagery: impact
dc.relation.referencesof spatial resolution and vegetation characteristics.
dc.relation.referencesGIScience & Remote Sensing, 60(1). https://doi.org/10.1080/15481603.2023.2267851
dc.relation.referencesStuart, M. B. , Davies, M. Hobbs, M. J. Mcgonigle, A. J. S.,
dc.relation.referencesStuart, M. B., Davies, M., Hobbs, M. J., Mcgonigle,
dc.relation.referencesA. J. S., & Willmott, J. R. (2022). Peatland Plant
dc.relation.referencesSpectral Response as a Proxy for Peat Health, Analysis
dc.relation.referencesUsing Low-Cost Hyperspectral Imaging Techniques.
dc.relation.referencesRemote Sensing 2022, Vol. 14, p. 3846, 14(16), 3846.
dc.relation.referenceshttps://doi.org/10.3390/RS14163846 Torabi Haghighi, A., Menberu, M. W., Darabi, H.,
dc.relation.referencesAkanegbu, J., & Kløve, B. (2018). Use of remote
dc.relation.referencessensing to analyse peatland changes after drainage
dc.relation.referencesfor peat extraction. Land Degradation &
dc.relation.referencesDevelopment, 29(10), 3479–3488.https://doi.org/10.1002/LDR.3122
dc.relation.referencesWhite, L., Millard, K., Banks, S., Richardson, M., Pasher, J.,
dc.relation.references& Duffe, J. (2017). Moving to the RADARSAT
dc.relation.referencesConstellation Mission: Comparing Synthesized Compact
dc.relation.referencesPolarimetry and Dual Polarimetry Data with Fully
dc.relation.referencesPolarimetric RADARSAT-2 Data for Image
dc.relation.referencesClassification of Peatlands. Remote Sensing 2017, Vol. 9,p. 573, 9(6), 573. https://doi.org/10.3390/RS9060573
dc.relation.referencesZhou, Z., Li, Z., Waldron, S., & Tanaka, A. (2019). InSAR
dc.relation.referencesTime Series Analysis of L-Band Data for
dc.relation.referencesUnderstanding Tropical Peatland Degradation and
dc.relation.referencesRestoration. Remote Sensing 2019, Vol. 11, p. 2592,11(21), 2592. https://doi.org/10.3390/RS11212592
dc.relation.referencesenAntala, M., Juszczak, R., van der Tol, C., & Rastogi, A. (2022). Impact of climate change-induced alterations in peatland
dc.relation.referencesenvegetation phenology and composition on carbon balance. Science of The Total Environment, 827, 154294.
dc.relation.referencesenhttps://doi.org/10.1016/J.SCITOTENV.2022.154294
dc.relation.referencesenArasumani, M., Thiel, F., Pham, V. D., Hellmann, C., Kaiser, M., & van der Linden, S. (2023). Advancing peatland
dc.relation.referencesenvegetation mapping by spaceborne imaging spectroscopy. Ecological Indicators, 154, 110665.
dc.relation.referencesenhttps://doi.org/10.1016/ J.ECOLIND.2023.110665
dc.relation.referencesenArroyo-Mora, J. P., Kalacska, M., Soffer, R., Ifimov, G., Leblanc, G., Schaaf, E. S., & Lucanus, O. (2018). Evaluation of
dc.relation.referencesenphenospectral dynamics with Sentinel-2A using a bottom-up approach in a northern ombrotrophic peatland. Remote
dc.relation.referencesenSensing of Environment, 216, 544–560. https://doi.org/10.1016/J.RSE.2018.07.021
dc.relation.referencesenArtz, R. R. E., Johnson, S., Bruneau, P., Britton, A. J., Mitchell, R. J., Ross, L., Donaldson-Selby, G., Donnelly, D.,
dc.relation.referencesenAitkenhead, M. J., Gimona, A., & Poggio, L. (2019). The potential for modelling peatland habitat condition in
dc.relation.referencesenScotland using long-term MODIS data. Science of The Total Environment, 660, 429–442.
dc.relation.referencesenhttps://doi.org/10.1016/J.SCITOTENV. 2018.12.327
dc.relation.referencesenAssiri, M., Sartori, A., Persichetti, A., Miele, C., Faelga, R. A., Blount, T., & Silvestri, S. (2023). Leaf Area Index and
dc.relation.referencesenaboveground biomass estimation of an alpine peatland with a UAV multi-sensor approach. GIScience & Remote
dc.relation.referencesenSensing, 60(1). https://doi.org/10.1080/15481603.2023.2270791
dc.relation.referencesenBall, J., Gimona, A., Cowie, N., Hancock, M., Klein, D., Donaldson-Selby, G., & Artz, R. R. E. (2023). Assessing the
dc.relation.referencesenPotential of using Sentinel-1 and 2 or high-resolution aerial imagery data with Machine Learning and Data Science
dc.relation.referencesenTechniques to Model Peatland Restoration Progress – a Northern Scotland case study. International Journal of
dc.relation.referencesenRemote Sensing, 44(9), 2885–2911. https://doi.org/10.1080/01431161.2023.2209916
dc.relation.referencesenBeyer, F., Jurasinski, G., Couwenberg, J., & Grenzdörffer, G. (2019). Multisensor data to derive peatland vegetation
dc.relation.referencesencommunities using a fixed-wing unmanned aerial vehicle. International Journal of Remote Sensing, 40(24), 9103–9125. https://doi.org/10.1080/01431161.2019.1580825
dc.relation.referencesenBourgeau-Chavez, L. L., Endres, S., Powell, R., Battaglia, M. J., Benscoter, B., Turetsky, M., Kasischke, E. S., & Banda, E.(2016). Mapping boreal peatland ecosystem types from multitemporal radar and optical satellite imagery.
dc.relation.referencesenHttps://Doi.Org/10.1139/Cjfr-2016-0192, 47(4), 545–559. https://doi.org/10.1139/CJFR-2016-0192
dc.relation.referencesenCole, B., McMorrow, J., & Evans, M. (2014). Spectral monitoring of moorland plant phenology to identify a temporal
dc.relation.referencesenwindow for hyperspectral remote sensing of peatland. ISPRS Journal of Photogrammetry and Remote Sensing, 90,49–58. https://doi.org/10.1016/J.ISPRSJPRS.2014.01.010
dc.relation.referencesenConnolly, J., Holden, N. M., Connolly, J., Seaquist, J. W., & Ward, S. M. (2011). Detecting recent disturbance on
dc.relation.referencesenMontane blanket bogs in the Wicklow Mountains, Ireland using the MODIS enhanced vegetation index. International
dc.relation.referencesenJournal of Remote Sensing, 32(9), 2377–2393. https://doi.org/10.1080/01431161003698310
dc.relation.referencesenCzapiewski, S., & Szumińska, D. (2022). An overview of remote sensing data applications in peatland research based on
dc.relation.referencesenworks from the period 2010–2021. Land, 11(1), 24. https://doi.org/10.3390/LAND11010024/S1
dc.relation.referencesenErudel, T., Fabre, S., Houet, T., Mazier, F., & Briottet, X. (2017). Criteria Comparison for Classifying Peatland
dc.relation.referencesenVegetation Types Using In Situ Hyperspectral Measurements. Remote Sensing, 9(7). https://doi.org/10.3390/rs9070748
dc.relation.referencesenFAO. Peatland Mapping and Monitoring: Recommendations and Technical Overview. (2020). FAO.https://doi.org/https://doi.org/10.4060/ca8200en
dc.relation.referencesenFranke, J., Keuck, V., & Siegert, F. (2012). Assessment of grassland use intensity by remote sensing to support
dc.relation.referencesenconservation schemes. Journal for Nature Conservation, 20(3), 125–134. https://doi.org/10.1016/J.JNC.2012.02.001
dc.relation.referencesenFrick, A., Steffenhagen, P., Zerbe, S., Timmermann, T., & Schulz, K. (2011). Monitoring of the Vegetation Composition
dc.relation.referencesenin Rewetted Peatland with Iterative Decision Tree Classification of Satellite Imagery. Photogrammetrie -
dc.relation.referencesenFernerkundung - Geoinformation, 2011(3), 109–122. https://doi.org/10.1127/1432-8364/2011/0076
dc.relation.referencesenGarisoain, R., Delire, C., Decharme, B., Ferrant, S., Granouillac, F., Payre-Suc, V., & Gandois, L. (2023). A Study of
dc.relation.referencesenDominant Vegetation Phenology in a Sphagnum Mountain Peatland Using In Situ and Sentinel-2 Observations.
dc.relation.referencesenJournal of Geophysical Research: Biogeosciences, 128(10), e2023JG007403. https://doi.org/10.1029/2023JG007403
dc.relation.referencesenHarris, A., Charnock, R., & Lucas, R. M. (2015). Hyperspectral remote sensing of peatland floristic gradients. Remote
dc.relation.referencesenSensing of Environment, 162, 99–111. https://doi.org/10.1016/J.RSE.2015.01.029
dc.relation.referencesenHilbert, D. W., Roulet, N., & Moore, T. (2000). Modelling and analysis of peatlands as dynamical systems. Journal of
dc.relation.referencesenEcology, 88(2), 230–242. https://doi.org/10.1046/J.1365-2745.2000.00438.X
dc.relation.referencesenJulia´, J., Cabezas, J., Galleguillos, M., Valdé S, A., Fuentes, J. P., Rez, C. P., Perez-Quezada, J. F., Cabezas, C. ,
dc.relation.referencesenGalleguillos, M., Valdés, A., Fuentes, J. P., Pérez, C., Perez-Quezada, J. F., & Peters, D. P. C. (2015). Evaluation of
dc.relation.referencesenimpacts of management in an anthropogenic peatland using field and remote sensing data. Ecosphere, 6(12), 1–24.
dc.relation.referencesenhttps://doi.org/10.1890/ES15-00232.1
dc.relation.referencesenKalacska, M., Lalonde, M., & Moore, T. R. (2015). Estimation of foliar chlorophyll and nitrogen content in an
dc.relation.referencesenombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sensing of Environment, 169, 270–279. https://doi.org/10.1016/J.RSE.2015.08.012
dc.relation.referencesenKarlson, M., Gålfalk, M., Crill, P., Bousquet, P., Saunois, M., & Bastviken, D. (2019). Delineating northern peatlands
dc.relation.referencesenusing Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sensing of
dc.relation.referencesenEnvironment, 231, 111252. https://doi.org/10.1016/J.RSE.2019.111252
dc.relation.referencesenKattenborn, T., Fassnacht, F. E., Pierce, S., Lopatin, J., Grime, J. P., & Schmidtlein, S. (2017). Linking plant strategies
dc.relation.referencesenand plant traits derived by radiative transfer modelling. Journal of Vegetation Science, 28(4), 717–727.
dc.relation.referencesenhttps://doi.org/10.1111/JVS.12525
dc.relation.referencesenKnoth, C., Klein, B., Prinz, T., & Kleinebecker, T. (2013). Unmanned aerial vehicles as innovative remote sensing
dc.relation.referencesenplatforms for high-resolution infrared imagery to support restoration monitoring in cut-over bogs. Applied Vegetation
dc.relation.referencesenScience, 16(3), 509–517. https://doi.org/10.1111/AVSC.12024
dc.relation.referencesenLees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., & Clark, J. M. (2018). Potential for using remote sensing to estimate
dc.relation.referencesencarbon fluxes across northern peatlands – A review. Science of The Total Environment, 615, 857–874.
dc.relation.referencesenhttps://doi.org/10.1016/J.SCITOTENV.2017.09.103
dc.relation.referencesenLourenco, M., Fitchett, J. M., & Woodborne, S. (2023). Peat definitions: A critical review. Progress in Physical
dc.relation.referencesenGeography, 47(4), 506–520. https://doi.org/10.1177/03091333221118353/ASSET/IMAGES /LARGE/10.1177_03091333221118353-FIG1.JPEG
dc.relation.referencesenMcMorrow, J. M., Cutler, M. E. J., Evans, M. G., & Al-Roichdi, A. (2004). Hyperspectral indices for characterizing
dc.relation.referencesenupland peat composition. International Journal of Remote Sensing, 25(2), 313–325. https://doi.org/10.1080/0143116031000117065
dc.relation.referencesenMcPartland, M. Y., Falkowski, M. J., Reinhardt, J. R., Kane, E. S., Kolka, R., Turetsky, M. R., Douglas, T. A.,
dc.relation.referencesenAnderson, J., Edwards, J. D., Palik, B., & Montgomery, R. A. (2019). Characterizing Boreal Peatland Plant
dc.relation.referencesenComposition and Species Diversity with Hyperspectral Remote Sensing. Remote Sensing 2019, Vol. 11, Page 1685,11(14), 1685. https://doi.org/10.3390/RS11141685
dc.relation.referencesenMerchant, M. A., Adams, J. R., Berg, A. A., Baltzer, J. L., Quinton, W. L., & Chasmer, L. E. (2017). Contributions of CBand
dc.relation.referencesenSAR Data and Polarimetric Decompositions to Subarctic Boreal Peatland Mapping. IEEE Journal of Selected
dc.relation.referencesenTopics in Applied Earth Observations and Remote Sensing, 10(4), 1467–1482. https://doi.org/10.1109/JSTARS.2016.2621043
dc.relation.referencesenMiddleton, M., Närhi, P., Arkimaa, H., Hyvönen, E., Kuosmanen, V., Treitz, P., & Sutinen, R. (2012). Ordination and
dc.relation.referencesenhyperspectral remote sensing approach to classify peatland biotopes along soil moisture and fertility gradients.
dc.relation.referencesenRemote Sensing of Environment, 124, 596–609. https://doi.org/10.1016/J.RSE.2012.06.010
dc.relation.referencesenMillard, K., Kirby, P., Nandlall, S., Behnamian, A., Banks, S., & Pacini, F. (2020). Using Growing-Season Time Series
dc.relation.referencesenCoherence for Improved Peatland Mapping: Comparing the Contributions of Sentinel-1 and RADARSAT-2
dc.relation.referencesenCoherence in Full and Partial Time Series. Remote Sensing 2020, Vol. 12, Page 2465, 12(15), 2465. https://doi.org/10.3390/RS12152465
dc.relation.referencesenMinasny, B., Adetsu, D. V., Aitkenhead, M., Artz, R. R. E., Baggaley, N., Barthelmes, A., Beucher, A., Caron, J.,
dc.relation.referencesenConchedda, G., Connolly, J., Deragon, R., Evans, C., Fadnes, K., Fiantis, D., Gagkas, Z., Gilet, L., Gimona, A.,
dc.relation.referencesenGlatzel, S., Greve, M. H., … Zak, D. (2023). Mapping and monitoring peatland conditions from global to field scale.
dc.relation.referencesenBiogeochemistry 2023 167:4, 167(4), 383–425. https://doi.org/10.1007/S10533-023-01084-1
dc.relation.referencesenMinasny, B., Berglund, Ö., Connolly, J., Hedley, C., de Vries, F., Gimona, A., Kempen, B., Kidd, D., Lilja, H., Malone, B.,
dc.relation.referencesenMcBratney, A., Roudier, P., O’Rourke, S., Rudiyanto, Padarian, J., Poggio, L., ten Caten, A., Thompson, D.,
dc.relation.referencesenTuve, C., & Widyatmanti, W. (2019). Digital mapping of peatlands – A critical review. Earth-Science Reviews, 196,102870. https://doi.org/10.1016/J.EARSCIREV.2019.05.014
dc.relation.referencesenMontanarella, L., R. J. A., J., & R., H. (2006). The distribution of peatland in Europe. Mires and Peat, 1.
dc.relation.referencesenPflugmacher, D., Krankina, O. N., & Cohen, W. B. (2007). Satellite-based peatland mapping: Potential of the MODIS
dc.relation.referencesensensor. Global and Planetary Change, 56(3–4), 248–257. https://doi.org/10.1016/J.GLOPLACHA.2006.07.019
dc.relation.referencesenRäsänen, A., Juutinen, S., Kalacska, M., Aurela, M., Heikkinen, P., Mäenpää, K., Rimali, A., & Virtanen, T. (2020).
dc.relation.referencesenPeatland leaf-area index and biomass estimation with ultra-high resolution remote sensing. GIScience & Remote
dc.relation.referencesenSensing, 57(7), 943–964. https://doi.org/10.1080/15481603.2020.1829377
dc.relation.referencesenRäsänen, A., Juutinen, S., Tuittila, E. S., Aurela, M., & Virtanen, T. (2019). Comparing ultra-high spatial resolution
dc.relation.referencesenremote-sensing methods in mapping peatland vegetation. Journal of Vegetation Science, 30(5), 1016–1026.https://doi.org/10.1111/JVS.12769
dc.relation.referencesenSchaepman-Strub, G., Limpens, J., Menken, M., Bartholomeus, H. M., & Schaepman, M. E. (2009). Towards spatial
dc.relation.referencesenassessment of carbon sequestration in peatlands: Spectroscopy based estimation of fractional cover of three plant
dc.relation.referencesenfunctional types. Biogeosciences, 6(2), 275–284. https://doi.org/10.5194/BG-6-275-2009
dc.relation.referencesenSchmidtlein, S., Feilhauer, H., & Bruelheide, H. (2012). Mapping plant strategy types using remote sensing. Journal of
dc.relation.referencesenVegetation Science, 23(3), 395–405. https://doi.org/10.1111/J.1654-1103.2011.01370.X
dc.relation.referencesenSteenvoorden, J., Bartholomeus, H., & Limpens, J. (2023). Less is more: Optimizing vegetation mapping in peatlands
dc.relation.referencesenusing unmanned aerial vehicles (UAVs). International Journal of Applied Earth Observation and Geoinformation,117, 103220. https://doi.org/10.1016/J.JAG.2023.103220
dc.relation.referencesenSteenvoorden, J., & Limpens, J. (2023). Upscaling peatland mapping with drone-derived imagery: impact of spatial
dc.relation.referencesenresolution and vegetation characteristics. GIScience & Remote Sensing, 60(1). https://doi.org/10.1080/15481603.2023.2267851
dc.relation.referencesenStuart, M. B. , Davies, M. , Hobbs, M. J. , Mcgonigle, A. J. S. , Stuart, M. B., Davies, M., Hobbs, M. J., Mcgonigle, A. J. S.,
dc.relation.referencesen& Willmott, J. R. (2022). Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost
dc.relation.referencesenHyperspectral Imaging Techniques. Remote Sensing 2022, Vol. 14, p. 3846, 14(16), 3846. https://doi.org/10.3390/RS14163846
dc.relation.referencesenTorabi Haghighi, A., Menberu, M. W., Darabi, H., Akanegbu, J., & Kløve, B. (2018). Use of remote sensing to analyse
dc.relation.referencesenpeatland changes after drainage for peat extraction. Land Degradation & Development, 29(10), 3479–3488.
dc.relation.referencesenhttps://doi.org/10.1002/LDR.3122
dc.relation.referencesenWhite, L., Millard, K., Banks, S., Richardson, M., Pasher, J., & Duffe, J. (2017). Moving to the RADARSAT
dc.relation.referencesenConstellation Mission: Comparing Synthesized Compact Polarimetry and Dual Polarimetry Data with Fully
dc.relation.referencesenPolarimetric RADARSAT-2 Data for Image Classification of Peatlands. Remote Sensing 2017, Vol. 9, p. 573, 9(6),573. https://doi.org/10.3390/RS9060573
dc.relation.referencesenZhou, Z., Li, Z., Waldron, S., & Tanaka, A. (2019). InSAR Time Series Analysis of L-Band Data for Understanding
dc.relation.referencesenTropical Peatland Degradation and Restoration. Remote Sensing 2019, Vol. 11, p. 2592, 11(21), 2592.
dc.relation.referencesenhttps://doi.org/10.3390/RS11212592
dc.relation.urihttps://doi.org/10.1016/J.SCITOTENV.2022.154294
dc.relation.urihttps://doi.org/10.1016/J.ECOLIND.2023.110665
dc.relation.urihttps://doi.org/10.1016/J.RSE.2018.07.021
dc.relation.urihttps://doi.org/10.1016/J.SCITOTENV.2018.12.327
dc.relation.urihttps://doi.org/10.1080/15481603.2023.2270791
dc.relation.urihttps://doi.org/10.1080/01431161.2023.2209916
dc.relation.urihttps://doi.org/10.1080/01431161.2019.1580825
dc.relation.uriHttps://Doi.Org/10.1139/Cjfr-2016-0192
dc.relation.urihttps://doi.org/10.1139/CJFR-2016-0192
dc.relation.urihttps://doi.org/10.1016/J.ISPRSJPRS.2014.01.010
dc.relation.urihttps://doi.org/10.1080/01431161003698310
dc.relation.urihttps://doi.org/10.3390/LAND11010024/S1
dc.relation.urihttps://doi.org/10.3390/rs9070748
dc.relation.urihttps://doi.org/https://doi.org/10.4060/ca8200en
dc.relation.urihttps://doi.org/10.1016/J
dc.relation.urihttps://doi.org/10.1127/1432-8364/2011/0076
dc.relation.urihttps://doi.org/10.1029/2023JG007403
dc.relation.urihttps://doi.org/10.1016/J.RSE.2015.01.029
dc.relation.urihttps://doi.org/10.1046/J.1365-2745.2000.00438.X
dc.relation.urihttps://doi.org/10.1890/ES15-00232.1
dc.relation.urihttps://doi.org/10.1016/J.RSE.2015.08.012
dc.relation.urihttps://doi.org/10.1016/J.RSE.2019.111252
dc.relation.urihttps://doi.org/10.1111/JVS.12525
dc.relation.urihttps://doi.org/10.1111/AVSC.12024
dc.relation.urihttps://doi.org/10.1016/J.SCITOTENV.2017.09.103
dc.relation.urihttps://doi.org/10.1177/03091333221118353/ASSET/IMAGES/LARGE/10.1177_03091333221118353-FIG1.JPEG
dc.relation.urihttps://doi.org/10.1080/0143116031000117065
dc.relation.urihttps://doi.org/10.3390/RS11141685
dc.relation.urihttps://doi.org/10.1109/JSTARS.2016.2621043
dc.relation.urihttps://doi.org/10.1016/J.RSE.2012.06.010
dc.relation.urihttps://doi.org/10.3390/RS12152465
dc.relation.urihttps://doi.org/10.1007/
dc.relation.urihttps://doi.org/10.1016/J.EARSCIREV.2019.05.014
dc.relation.urihttps://doi.org/10.1016/J.GLOPLACHA.2006.07.019
dc.relation.urihttps://doi.org/10.1080/15481603.2020.1829377
dc.relation.urihttps://doi.org/10.1111/JVS.12769
dc.relation.urihttps://doi.org/10.5194/BG-6-275-2009
dc.relation.urihttps://doi.org/10.1111/J.1654-1103.2011.01370.X
dc.relation.urihttps://doi.org/10.1016/J.JAG.2023.103220
dc.relation.urihttps://doi.org/10.1080/15481603.2023.2267851
dc.relation.urihttps://doi.org/10.3390/RS14163846
dc.relation.urihttps://doi.org/10.1002/LDR.3122
dc.relation.urihttps://doi.org/10.3390/RS9060573
dc.relation.urihttps://doi.org/10.3390/RS11212592
dc.relation.urihttps://doi.org/10.1016/
dc.relation.urihttps://doi.org/10.1016/J.SCITOTENV
dc.relation.urihttps://doi.org/10.1016/J.JNC.2012.02.001
dc.relation.urihttps://doi.org/10.1177/03091333221118353/ASSET/IMAGES
dc.relation.urihttps://doi.org/10.1007/S10533-023-01084-1
dc.rights.holder© Національний університет „Львівська політехніка“, 2025; © Західне геодезичне товариство, 2025
dc.subjectдистанційне зондування Землі
dc.subjectДЗЗ
dc.subjectметоди ДЗЗ
dc.subjectдані ДЗЗ
dc.subjectгіпер- та мультиспектральні дані
dc.subjectрадарні дані із синтезованою апертурою (SAR)
dc.subjectдані LiDAR
dc.subjectдані БПЛА
dc.subjectкартографування торфовищ
dc.subjectмоніторинг торфовищ
dc.subjectаналіз ареалів торфовищ
dc.subjectаналіз біорізноманіття торфовищ
dc.subjectremote sensing
dc.subjectremote sensing methods
dc.subjectremote sensing data
dc.subjecthyper- and multispectral data
dc.subjectsynthetic aperture radar (SAR) data
dc.subjectLiDAR data
dc.subjectUAV data
dc.subjectpeatland mapping
dc.subjectpeatland monitoring
dc.subjectpeatland habitat analysis
dc.subjectpeatland biodiversity analysis
dc.subject.udc528.3
dc.titleДослідження використання методів ДЗЗ для моніторингу та картографування торфовищ
dc.title.alternativeInvestigating the use of remote sensing methods for monitoring and mapping peatlands
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2025nI_49__Rasyun_V-Investigating_the_use_of_201-211.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.85 KB
Format:
Plain Text
Description: