Вплив умов гальванічного заміщення у розчинах ДМСО на розміри наночастинок золота, фіксованих на поверхні кремнію

dc.citation.epage52
dc.citation.issue1
dc.citation.spage47
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШепіда, М. В.
dc.contributor.authorShepida, M. V.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2020-02-28T13:09:37Z
dc.date.available2020-02-28T13:09:37Z
dc.date.created2019-02-28
dc.date.issued2019-02-28
dc.description.abstractНаведено результати досліджень залежності розмірів наночастинок золота, осаджених на поверхні кремнію, від умов гальванічного заміщення (складу розчину, температури та тривалості процесу) у середовищі ДМСО. Показано, що за концентрації 2–8 mМ H [AuCl4] формуються сферичні наночастинки металу з доброю адгезією до підкладки. Встановлено, що фіксовані наночастинки золота проявляють високу каталітичну активність для метал- каталітичного хімічного травлення кремнію з утворенням його наноструктур.
dc.description.abstractThe article presents the results of investigations of the dependence of the sizes of gold nanoparticles deposited on the surface of silicon from the conditions of galvanic replacement (composition of solution, temperature and duration of the process) in a DMSO medium. It is shown that, at concentrations of 2–8 mM H [AuCl4], spherical metal nanoparticles with good adhesion to the substrate are formed. It is established that fixed gold nanoparticles exhibit high catalytic activity for metal-catalytic chemical etching of silicon with the formation of its nanostructures.
dc.format.extent47-52
dc.format.pages6
dc.identifier.citationШепіда М. В. Вплив умов гальванічного заміщення у розчинах ДМСО на розміри наночастинок золота, фіксованих на поверхні кремнію / М. В. Шепіда // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Том 2. — № 1. — С. 47–52.
dc.identifier.citationenShepida M. V. Influence of galvanic replacement conditions in DMSO solutions on the sizes of gold nanoparticles fixed on the surface of silicon / M. V. Shepida // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 2. — No 1. — P. 47–52.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46381
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (2), 2019
dc.relation.references1. Nichkalo, S., Druzhinin, A., Evtukh, A., & Steblova, O. (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale research letters, 12(1), 106.
dc.relation.references2. Han, H., Huang, Z., & Lee, W. (2014). Metalassisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9(3), 271–304.
dc.relation.references3. Huang, Z., Geyer, N., Werner, P., De Boor, J., & Gösele, U. (2011). Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced materials, 23(2), 285–308.
dc.relation.references4. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.
dc.relation.references5. Ashrafabadi, S., & Eshghi, H. (2018). Singlecrystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517–524.
dc.relation.references6. Huang Z., Geyer N., Werner P., de Boor J., and Gösele U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.
dc.relation.references7. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.
dc.relation.references8. Druzhinin, A., Yerokhov, V., Nichkalo, S., & Berezhanskyi, Y. (2016). Micro- and nanotextured silicon for antireflective coatings of solar cells. In Journal of Nano Research, 39, 89–95.
dc.relation.references9. Balderas-Valadez, R. F., Agarwal, V., & Pacholski, C. (2016). Fabrication of porous siliconbased optical sensors using metal-assisted chemical etching. RSC Advances, 6(26), 21430–21434.
dc.relation.references10. Duran J. M., Sarangan A. (2017). Fabrication of ultrahigh aspect ratio silicon nanostructures using selfassembled gold metal-assisted chemical etching. Journal of Micro/Nanolithography MEMS MOEMS, 16 (1), 014502.
dc.relation.references11. Geyer, N., Fuhrmann, B., Huang, Z., de Boor, J., Leipner, H. S., & Werner, P. (2012). Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. The journal of physical chemistry C, 116(24), 13446–13451.
dc.relation.references12. Chen, J. M., Chen, C. Y., Wong, C. P., & Chen, C. Y. (2017). Inherent formation of porous ptype Si nanowires using palladium-assisted chemical etching. Applied Surface Science, 392, 498–502.
dc.relation.references13. Zhang, C., Lin, K., Huang, Y., & Zhang, J. (2017). Graphene-Ag hybrids on laser-textured Si surface for SERS detection. Sensors, 17(7), 1462.
dc.relation.references14. Huang, Z., Zhang, X., Reiche, M., Liu, L., Lee, W., Shimizu, T., & Gösele, U. (2008). Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano letters, 8(9), 3046–3051.
dc.relation.references15. Wei, Q., Shi, Y. S., Sun, K. Q., & Xu, B. Q. (2016). Pd-on-Si catalysts prepared via galvanic displacement for the selective hydrogenation of parachloronitrobenzene. Chemical Communications, 52(14), 3026–3029.
dc.relation.references16. Djokić, S. S., & Cadien, K. (2015). Galvanic deposition of silver on silicon surfaces from fluoride free aqueous solutions. ECS Electrochemistry Letters, 4(6), D11–D13.
dc.relation.references17. Fransaer, J., Vereecken, P. M., & Oskam, G. (Eds.). (2015, December). Semiconductors, Metal Oxides, and Composites: Metallization and Electrodeposition of Thin Films and Nanostructures 3. The Electrochemical Society.
dc.relation.references18. Gutes, A., Laboriante, I., Carraro, C., & Maboudian, R. (2010). Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 147(2), 681–686.
dc.relation.references19. Carraro, C., Maboudian, R., & Magagnin, L. (2007). Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surface Science Reports, 62(12), 499–525.
dc.relation.references20. Gutés, A., Carraro, C., & Maboudian, R. (2011). Ultrasmooth gold thin films by self-limiting galvanic displacement on silicon. ACS applied materials & interfaces, 3(5), 1581–1584.
dc.relation.references21. Sayed, S. Y., Wang, F., Malac, M., Meldrum, A., Egerton, R. F., & Buriak, J. M. (2009). Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS nano, 3(9), 2809–2817.
dc.relation.references22. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of Silicon Surface with Silver, Gold and Palladium Nanostructures via Galvanic Substitution in DMSO and DMF Solutions. Chemistry & Chemical Technology, 12(3), 305–309.
dc.relation.references23. Itasaka, H., Nishi, M., Shimizu, M., & Hirao, K. (2016). Growth of Nanogold at Interfaces between Locally Induced Naked Silicon Surfaces and Pure HAuCl4 Solutions. Journal of The Electrochemical Society, 163(14), D743–D746.
dc.relation.references24. Dobrovets’ka, O. Y., Kuntyi, O. I., Zozulya, G. I., Saldan, I. V., & Reshetnyak, O. V. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51(3), 418–423.
dc.relation.references25. Wang, Y. C., Lin, J. Y., Wang, C. H., Huang, P. L., Lee, S. L., & Chang, J. K. (2014). Formation of metal coatings on magnesium using a galvanic replacement reaction in ionic liquid. RSC Advances, 4(67), 35298–35301.
dc.relation.references26. Simeonova, S., Georgiev, P., Exner, K. S., Mihaylov, L., Nihtianova, D., Koynov, K., & Balashev, K. (2018). Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 557, 106–115.
dc.relation.referencesen1. Nichkalo, S., Druzhinin, A., Evtukh, A., & Steblova, O. (2017). Silicon nanostructures produced by modified MacEtch method for antireflective Si surface. Nanoscale research letters, 12(1), 106.
dc.relation.referencesen2. Han, H., Huang, Z., & Lee, W. (2014). Metalassisted chemical etching of silicon and nanotechnology applications. Nanotoday, 9(3), 271–304.
dc.relation.referencesen3. Huang, Z., Geyer, N., Werner, P., De Boor, J., & Gösele, U. (2011). Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced materials, 23(2), 285–308.
dc.relation.referencesen4. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.
dc.relation.referencesen5. Ashrafabadi, S., & Eshghi, H. (2018). Singlecrystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices and Microstructures, 120, 517–524.
dc.relation.referencesen6. Huang Z., Geyer N., Werner P., de Boor J., and Gösele U. (2011). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.
dc.relation.referencesen7. Wu, H. L., Chen, C. H., & Huang, M. H. (2008). Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chemistry of Materials, 21(1), 110–114.
dc.relation.referencesen8. Druzhinin, A., Yerokhov, V., Nichkalo, S., & Berezhanskyi, Y. (2016). Micro- and nanotextured silicon for antireflective coatings of solar cells. In Journal of Nano Research, 39, 89–95.
dc.relation.referencesen9. Balderas-Valadez, R. F., Agarwal, V., & Pacholski, C. (2016). Fabrication of porous siliconbased optical sensors using metal-assisted chemical etching. RSC Advances, 6(26), 21430–21434.
dc.relation.referencesen10. Duran J. M., Sarangan A. (2017). Fabrication of ultrahigh aspect ratio silicon nanostructures using selfassembled gold metal-assisted chemical etching. Journal of Micro/Nanolithography MEMS MOEMS, 16 (1), 014502.
dc.relation.referencesen11. Geyer, N., Fuhrmann, B., Huang, Z., de Boor, J., Leipner, H. S., & Werner, P. (2012). Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. The journal of physical chemistry C, 116(24), 13446–13451.
dc.relation.referencesen12. Chen, J. M., Chen, C. Y., Wong, C. P., & Chen, C. Y. (2017). Inherent formation of porous ptype Si nanowires using palladium-assisted chemical etching. Applied Surface Science, 392, 498–502.
dc.relation.referencesen13. Zhang, C., Lin, K., Huang, Y., & Zhang, J. (2017). Graphene-Ag hybrids on laser-textured Si surface for SERS detection. Sensors, 17(7), 1462.
dc.relation.referencesen14. Huang, Z., Zhang, X., Reiche, M., Liu, L., Lee, W., Shimizu, T., & Gösele, U. (2008). Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano letters, 8(9), 3046–3051.
dc.relation.referencesen15. Wei, Q., Shi, Y. S., Sun, K. Q., & Xu, B. Q. (2016). Pd-on-Si catalysts prepared via galvanic displacement for the selective hydrogenation of parachloronitrobenzene. Chemical Communications, 52(14), 3026–3029.
dc.relation.referencesen16. Djokić, S. S., & Cadien, K. (2015). Galvanic deposition of silver on silicon surfaces from fluoride free aqueous solutions. ECS Electrochemistry Letters, 4(6), D11–D13.
dc.relation.referencesen17. Fransaer, J., Vereecken, P. M., & Oskam, G. (Eds.). (2015, December). Semiconductors, Metal Oxides, and Composites: Metallization and Electrodeposition of Thin Films and Nanostructures 3. The Electrochemical Society.
dc.relation.referencesen18. Gutes, A., Laboriante, I., Carraro, C., & Maboudian, R. (2010). Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sensors and Actuators B: Chemical, 147(2), 681–686.
dc.relation.referencesen19. Carraro, C., Maboudian, R., & Magagnin, L. (2007). Metallization and nanostructuring of semiconductor surfaces by galvanic displacement processes. Surface Science Reports, 62(12), 499–525.
dc.relation.referencesen20. Gutés, A., Carraro, C., & Maboudian, R. (2011). Ultrasmooth gold thin films by self-limiting galvanic displacement on silicon. ACS applied materials & interfaces, 3(5), 1581–1584.
dc.relation.referencesen21. Sayed, S. Y., Wang, F., Malac, M., Meldrum, A., Egerton, R. F., & Buriak, J. M. (2009). Heteroepitaxial growth of gold nanostructures on silicon by galvanic displacement. ACS nano, 3(9), 2809–2817.
dc.relation.referencesen22. Kuntyi, O., Shepida, M., Sus, L., Zozulya, G., & Korniy, S. (2018). Modification of Silicon Surface with Silver, Gold and Palladium Nanostructures via Galvanic Substitution in DMSO and DMF Solutions. Chemistry & Chemical Technology, 12(3), 305–309.
dc.relation.referencesen23. Itasaka, H., Nishi, M., Shimizu, M., & Hirao, K. (2016). Growth of Nanogold at Interfaces between Locally Induced Naked Silicon Surfaces and Pure HAuCl4 Solutions. Journal of The Electrochemical Society, 163(14), D743–D746.
dc.relation.referencesen24. Dobrovets’ka, O. Y., Kuntyi, O. I., Zozulya, G. I., Saldan, I. V., & Reshetnyak, O. V. (2015). Galvanic deposition of gold and palladium on magnesium by the method of substitution. Materials Science, 51(3), 418–423.
dc.relation.referencesen25. Wang, Y. C., Lin, J. Y., Wang, C. H., Huang, P. L., Lee, S. L., & Chang, J. K. (2014). Formation of metal coatings on magnesium using a galvanic replacement reaction in ionic liquid. RSC Advances, 4(67), 35298–35301.
dc.relation.referencesen26. Simeonova, S., Georgiev, P., Exner, K. S., Mihaylov, L., Nihtianova, D., Koynov, K., & Balashev, K. (2018). Kinetic study of gold nanoparticles synthesized in the presence of chitosan and citric acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 557, 106–115.
dc.subjectзолото
dc.subjectДМСО
dc.subjectкремній
dc.subjectгальванічне заміщення
dc.subjectметал-каталітичне хімічне травлення
dc.subjectgold
dc.subjectdimethyl sulfoxide
dc.subjectsilicon surface
dc.subjectgalvanic replacement
dc.subjectmetal-catalytic chemical etching
dc.titleВплив умов гальванічного заміщення у розчинах ДМСО на розміри наночастинок золота, фіксованих на поверхні кремнію
dc.title.alternativeInfluence of galvanic replacement conditions in DMSO solutions on the sizes of gold nanoparticles fixed on the surface of silicon
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2019v2n1_Shepida_M_V-Influence_of_galvanic_replacement_47-52.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2019v2n1_Shepida_M_V-Influence_of_galvanic_replacement_47-52__COVER.png
Size:
397.81 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: