Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide
dc.citation.epage | 278 | |
dc.citation.issue | 2 | |
dc.citation.spage | 272 | |
dc.contributor.affiliation | Odesa I.I. Mechnikov National University | |
dc.contributor.affiliation | Physico-Chemical Institute of Environment and Human Protection | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Kiose, Tatyana | |
dc.contributor.author | Rakitskaya, Tatyana | |
dc.contributor.author | Ennan, Alim | |
dc.contributor.author | Vasylechko, Volodymyr | |
dc.contributor.author | Gryshchouk, Halyna | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-12T08:30:43Z | |
dc.date.available | 2024-02-12T08:30:43Z | |
dc.date.created | 2023-03-16 | |
dc.date.issued | 2023-03-16 | |
dc.description.abstract | Сукупність методів дослідження (рентгенофазовий, десорбційний, кінетичний) використовували для встановлення стану базових компонентів K2PdCl4 і Cu(NO3)2 в каталізаторі окиснення монооксиду карбону киснем. Встановлено, що вихідні сполуки паладію (ІІ) і купруму (ІІ) під дією вуглецевого волокнистого носія змінюють свій стан. Паладій відновлюється до рентгеноаморфного Pd0, а купрум (ІІ) перебуває у формі кристалічної фази Cu2(OH)3Cl. Встановлено, що каталізатор проявляє захисні властивості в межах початкових концентрацій монооксиду карбону £ 300 мг/м3 та ефективного часу контакту 0,45 с, і його можна застосовувати в засобах захисту органів дихання людини. | |
dc.description.abstract | A set of research methods (X-ray phase, desorption, kinetic) was used to determine the state of the basic components K2PdCl4 and Cu(NO3)2 in the catalyst for the oxidation of carbon monoxide by oxygen. It was found that the palladium (II) and copper (II) initial compounds under the action of carbon fiber carrier change their state. Palladium is reduced to X-ray amorphous Pd0, and copper (II) is in the form of a crystalline phase Cu2(OH)3Cl. It was found that the catalyst exhibits protective properties within the initial concentrations of carbon monoxide £ 300 mg/m3 and an effective contact time of 0.45 s and can be used in human respiratory protection. | |
dc.format.extent | 272-278 | |
dc.format.pages | 7 | |
dc.identifier.citation | Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide / Tatyana Kiose, Tatyana Rakitskaya, Alim Ennan, Volodymyr Vasylechko, Halyna Gryshchouk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 272–278. | |
dc.identifier.citationen | Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide / Tatyana Kiose, Tatyana Rakitskaya, Alim Ennan, Volodymyr Vasylechko, Halyna Gryshchouk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 272–278. | |
dc.identifier.doi | doi.org/10.23939/chcht17.02.272 | |
dc.identifier.issn | 1996-4196 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61255 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry & Chemical Technology, 2 (17), 2023 | |
dc.relation.references | [1] Rakitskaya, T.L.; Ennan, A.A.; Volkova, V.Ya. Nizkotempera-turnaya kataliticheskaya ochistka vozdukha ot ugarnogo gaza; Ekologiya, 2005. | |
dc.relation.references | [2] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A. Kontseptualnyye osnovy razrabotki nizkotemperaturnykh katalizatorov okisleniya oksida ugleroda kislorodom vozdukha. Odesa National University Herald. Chemistry 2020, 25, 6-23. https://doi.org/10.18524/2304-0947.2020.4(76).216920 | |
dc.relation.references | [3] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A.A.; Volkova, V.Ya.; Jiga, A.M.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia І. metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-15. https://doi.org/10.18524/2304-0947.2013.2(46).56996 | |
dc.relation.references | [4] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A.; Volkova, V.Ya. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizato-rov okisleniia monooksida ugleroda respiratornogo naznacheniia ІІ. Oksidnye i oksidno-metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-10. https://doi.org/10.18524/2304-0947.2013.3(47).57002 | |
dc.relation.references | [5] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A. A.; Jiga, A.M.; Vol-kova, V.Ya.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. ІІІ. Nanesennye metallokompleksnye katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-12. https://doi.org/10.18524/2304-0947.2013.4(48).37012 | |
dc.relation.references | [6] Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide; 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. https://doi.org/10.2514/6.2010-6062 | |
dc.relation.references | [7] Croll, L.; Billingsley, B.; Brey, L.; Fansler, D.; Martinson, P. Design and Evaluation of Escape and CBRN Respirator Cartridges Using Nano Gold Carbon Monoxide Oxidation Catalysts; 10th International Symposium on Protection against Chemical and Bio-logical Warfare Agents; Stockholm, 2010. | |
dc.relation.references | [8] Punde, S.S.; Tatarchuk, B.J. CO Removal at Ambient Condi-tions: Catalyst Screening and Impact of Operating Conditions. Sep. Purif. Technol. 2017, 183, 43-53. https://doi.org/10.1016/j.seppur.2017.03.007 | |
dc.relation.references | [9] Rakitskaya, T.L.; Kiose, T.A.; Golubchik, K.O.; Ennan, A.A.; Volkova, V.Y. Acid-Modified Clinoptilolite as a Support for Palla-dium-Copper Complexes Catalyzing Carbon Monoxide Oxidation with Air Oxygen. Chem. Cent. J. 2017, 11, 28. https://doi.org/10.1186/s13065-017-0256-6 | |
dc.relation.references | [10] Rakitskaya, T.L.; Kiose, T.A.; Zryutina, A.М.; Gladyshevskii, R.E.; Truba, A.S.; Vasylechko, V.O.; Demchenko, P.Yu.; Gryschouk, G.V.; Volkova, V.Ya. Solid-State Catalysts Based on Bentonites and Pd(II) Cu(II) Complexes for Low-Temperature Carbon Monoxide Oxidation. Solid State Phenom. 2013, 200, 299-304. https://doi.org/10.4028/www.scientific.net/SSP.200.299 | |
dc.relation.references | [11] Rakitskaya, T.L.; Dzhyga, G.M.; Kiose, T.A.; Oleksenko, L.P.; Volkova, V.Y. Pd(II), Cu(II), and Pillared Clay Based Nanocatalysts for Low-Temperature CO Oxidation. SN Appl. Sci. 2019, 1, 291. https://doi.org/10.1007/s42452-019-0314-x | |
dc.relation.references | [12] Titov, D.N.; Ustyugov, A.V.; Tkachenko, O.P.; Kustov, L.M.; Zubavichus, Ya.V.; Veligzhanin, A.A.; Sadovskaya, N.V.; Oshanina, I.V.; Bruk, L.G.; Temkin, O.N. State of Active Components on the Surface of the PdCl2-CuCl2/γ-Al2O3 Catalyst for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2012, 53, 262-274. https://doi.org/10.1134/S0023158412020140 | |
dc.relation.references | [13] Du, X.; Li, H.; Yu, J.; Xiao, X.; Shi, Z.; Mao, D.; Lu, G. Realization of High Effective Pd–Cu–Clx/Al2O3 Catalyst for Low Temperature CO Oxidation by Pre-Synthesizing the Active Copper Phase of Cu2Cl(OH)3. Catal. Sci. Technol. 2015, 5, 3970-3979. https://doi.org/10.1039/c5cy00545k | |
dc.relation.references | [14] Shen, C.; Li, H.; Yu, J.; Wu, G.; Mao, D.; Lu, G.A First-Principles DFT Study on the Active Sites of Pd-Cu-Clx/Al2O3 Catalyst for Low-Temperature CO Oxidation. ChemCatChem. 2013, 5, 2813-2817. https://doi.org/10.1002/cctc.201300356 | |
dc.relation.references | [15] Bruk, L.; Titov, D.; Ustyugov, A.; Zubavichus, Y.; Cherniko-va, V.; Tkachenko, O.; Kustov, L.; Murzin, V.; Oshanina, I.; Tem-kin, O. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst. Nanomaterials 2018, 8, 217. https://doi.org/10.3390/nano8040217 | |
dc.relation.references | [16] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B. 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z | |
dc.relation.references | [17] Radkevich, V.Z.; Wilson, K.; Khaminets, S.G.; Sen’ko, T.L. Effect of Preparation Conditions on the Formation of the Active Phase of Carbon Fiber Catalytic Systems for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2014, 55, 252-267. https://doi.org/10.1134/s0023158414020086 | |
dc.relation.references | [18] Kiose, T.A.; Truba, A.S.; Rakitskaya, T.L.; Ennan, A.A.-A.; Rakitskiy, О.S. Effect of Certain Catalytic Poisons on the Activity of Cuprum-Paladium Complexes Applied on Carbon Material in The Reaction in the Reaction of Carbon Monoxide Oxidation by Air Oxygen. Odesa National University Herald. Chemistry 2022, 27, 5-19. https://doi.org/10.18524/2304-0947.2022.2(82).264875 | |
dc.relation.references | [19] Wang, S.; Chen, Z.-H.; Ma, W.-J.; Ma, Q.-S. Influence of Heat Treatment on Physical–Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32, 291-295. https://doi.org/10.1016/j.ceramint.2005.02.014 | |
dc.relation.references | [20] Shen, Y.; Guo, Y.; Wang, L.; Wang, Y.; Guo, Y.; Gong, X.; Lu, G. The Stability and Deactivation of Pd-Сu-Clx/A12O3 Catalyst for Low Temperature СО Охidation: An Effect of Moisture. Catal. Sci. Technol. 2011, 1, 1202-1207. https://doi.org/10.1039/C1CY00146A | |
dc.relation.references | [21] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z | |
dc.relation.references | [22] Rakitskaya, T.L.; Truba, A.S.; Raskola, L.A.; Ennan A.A. Modyfikonanyi khlorydom manhanu(II) pryrodnyi klynoptylolit v reaktsii rozkladannya ozonu. Him. Fiz. Tehnol. Poverhni 2013, 4, 297-304. | |
dc.relation.references | [23] Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Gryschouk, G.V.; Dzhiga, A.M.; Volkova, V.Y. Catalytic Activity of Pd(II) and Cu(II) Complexes Anchored with Natural and Pre-Modified Bentonite on the Oxidation of Carbon Monoxide. Chemistry of metals and alloys 2015, 8, 32-38. http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10 | |
dc.relation.referencesen | [1] Rakitskaya, T.L.; Ennan, A.A.; Volkova, V.Ya. Nizkotempera-turnaya kataliticheskaya ochistka vozdukha ot ugarnogo gaza; Ekologiya, 2005. | |
dc.relation.referencesen | [2] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A. Kontseptualnyye osnovy razrabotki nizkotemperaturnykh katalizatorov okisleniya oksida ugleroda kislorodom vozdukha. Odesa National University Herald. Chemistry 2020, 25, 6-23. https://doi.org/10.18524/2304-0947.2020.4(76).216920 | |
dc.relation.referencesen | [3] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A.A.; Volkova, V.Ya.; Jiga, A.M.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia I. metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-15. https://doi.org/10.18524/2304-0947.2013.2(46).56996 | |
dc.relation.referencesen | [4] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A.; Volkova, V.Ya. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizato-rov okisleniia monooksida ugleroda respiratornogo naznacheniia II. Oksidnye i oksidno-metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-10. https://doi.org/10.18524/2304-0947.2013.3(47).57002 | |
dc.relation.referencesen | [5] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A. A.; Jiga, A.M.; Vol-kova, V.Ya.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. III. Nanesennye metallokompleksnye katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-12. https://doi.org/10.18524/2304-0947.2013.4(48).37012 | |
dc.relation.referencesen | [6] Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide; 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. https://doi.org/10.2514/6.2010-6062 | |
dc.relation.referencesen | [7] Croll, L.; Billingsley, B.; Brey, L.; Fansler, D.; Martinson, P. Design and Evaluation of Escape and CBRN Respirator Cartridges Using Nano Gold Carbon Monoxide Oxidation Catalysts; 10th International Symposium on Protection against Chemical and Bio-logical Warfare Agents; Stockholm, 2010. | |
dc.relation.referencesen | [8] Punde, S.S.; Tatarchuk, B.J. CO Removal at Ambient Condi-tions: Catalyst Screening and Impact of Operating Conditions. Sep. Purif. Technol. 2017, 183, 43-53. https://doi.org/10.1016/j.seppur.2017.03.007 | |
dc.relation.referencesen | [9] Rakitskaya, T.L.; Kiose, T.A.; Golubchik, K.O.; Ennan, A.A.; Volkova, V.Y. Acid-Modified Clinoptilolite as a Support for Palla-dium-Copper Complexes Catalyzing Carbon Monoxide Oxidation with Air Oxygen. Chem. Cent. J. 2017, 11, 28. https://doi.org/10.1186/s13065-017-0256-6 | |
dc.relation.referencesen | [10] Rakitskaya, T.L.; Kiose, T.A.; Zryutina, A.M.; Gladyshevskii, R.E.; Truba, A.S.; Vasylechko, V.O.; Demchenko, P.Yu.; Gryschouk, G.V.; Volkova, V.Ya. Solid-State Catalysts Based on Bentonites and Pd(II) Cu(II) Complexes for Low-Temperature Carbon Monoxide Oxidation. Solid State Phenom. 2013, 200, 299-304. https://doi.org/10.4028/www.scientific.net/SSP.200.299 | |
dc.relation.referencesen | [11] Rakitskaya, T.L.; Dzhyga, G.M.; Kiose, T.A.; Oleksenko, L.P.; Volkova, V.Y. Pd(II), Cu(II), and Pillared Clay Based Nanocatalysts for Low-Temperature CO Oxidation. SN Appl. Sci. 2019, 1, 291. https://doi.org/10.1007/s42452-019-0314-x | |
dc.relation.referencesen | [12] Titov, D.N.; Ustyugov, A.V.; Tkachenko, O.P.; Kustov, L.M.; Zubavichus, Ya.V.; Veligzhanin, A.A.; Sadovskaya, N.V.; Oshanina, I.V.; Bruk, L.G.; Temkin, O.N. State of Active Components on the Surface of the PdCl2-CuCl2/g-Al2O3 Catalyst for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2012, 53, 262-274. https://doi.org/10.1134/S0023158412020140 | |
dc.relation.referencesen | [13] Du, X.; Li, H.; Yu, J.; Xiao, X.; Shi, Z.; Mao, D.; Lu, G. Realization of High Effective Pd–Cu–Clx/Al2O3 Catalyst for Low Temperature CO Oxidation by Pre-Synthesizing the Active Copper Phase of Cu2Cl(OH)3. Catal. Sci. Technol. 2015, 5, 3970-3979. https://doi.org/10.1039/P.5cy00545k | |
dc.relation.referencesen | [14] Shen, C.; Li, H.; Yu, J.; Wu, G.; Mao, D.; Lu, G.A First-Principles DFT Study on the Active Sites of Pd-Cu-Clx/Al2O3 Catalyst for Low-Temperature CO Oxidation. ChemCatChem. 2013, 5, 2813-2817. https://doi.org/10.1002/cctc.201300356 | |
dc.relation.referencesen | [15] Bruk, L.; Titov, D.; Ustyugov, A.; Zubavichus, Y.; Cherniko-va, V.; Tkachenko, O.; Kustov, L.; Murzin, V.; Oshanina, I.; Tem-kin, O. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/g-Al2O3 Nanocatalyst. Nanomaterials 2018, 8, 217. https://doi.org/10.3390/nano8040217 | |
dc.relation.referencesen | [16] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B. 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z | |
dc.relation.referencesen | [17] Radkevich, V.Z.; Wilson, K.; Khaminets, S.G.; Sen’ko, T.L. Effect of Preparation Conditions on the Formation of the Active Phase of Carbon Fiber Catalytic Systems for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2014, 55, 252-267. https://doi.org/10.1134/s0023158414020086 | |
dc.relation.referencesen | [18] Kiose, T.A.; Truba, A.S.; Rakitskaya, T.L.; Ennan, A.A.-A.; Rakitskiy, O.S. Effect of Certain Catalytic Poisons on the Activity of Cuprum-Paladium Complexes Applied on Carbon Material in The Reaction in the Reaction of Carbon Monoxide Oxidation by Air Oxygen. Odesa National University Herald. Chemistry 2022, 27, 5-19. https://doi.org/10.18524/2304-0947.2022.2(82).264875 | |
dc.relation.referencesen | [19] Wang, S.; Chen, Z.-H.; Ma, W.-J.; Ma, Q.-S. Influence of Heat Treatment on Physical–Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32, 291-295. https://doi.org/10.1016/j.ceramint.2005.02.014 | |
dc.relation.referencesen | [20] Shen, Y.; Guo, Y.; Wang, L.; Wang, Y.; Guo, Y.; Gong, X.; Lu, G. The Stability and Deactivation of Pd-Su-Clx/A12O3 Catalyst for Low Temperature SO Okhidation: An Effect of Moisture. Catal. Sci. Technol. 2011, 1, 1202-1207. https://doi.org/10.1039/P.1CY00146A | |
dc.relation.referencesen | [21] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z | |
dc.relation.referencesen | [22] Rakitskaya, T.L.; Truba, A.S.; Raskola, L.A.; Ennan A.A. Modyfikonanyi khlorydom manhanu(II) pryrodnyi klynoptylolit v reaktsii rozkladannya ozonu. Him. Fiz. Tehnol. Poverhni 2013, 4, 297-304. | |
dc.relation.referencesen | [23] Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Gryschouk, G.V.; Dzhiga, A.M.; Volkova, V.Y. Catalytic Activity of Pd(II) and Cu(II) Complexes Anchored with Natural and Pre-Modified Bentonite on the Oxidation of Carbon Monoxide. Chemistry of metals and alloys 2015, 8, 32-38. http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2020.4(76).216920 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2013.2(46).56996 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2013.3(47).57002 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2013.4(48).37012 | |
dc.relation.uri | https://doi.org/10.2514/6.2010-6062 | |
dc.relation.uri | https://doi.org/10.1016/j.seppur.2017.03.007 | |
dc.relation.uri | https://doi.org/10.1186/s13065-017-0256-6 | |
dc.relation.uri | https://doi.org/10.4028/www.scientific.net/SSP.200.299 | |
dc.relation.uri | https://doi.org/10.1007/s42452-019-0314-x | |
dc.relation.uri | https://doi.org/10.1134/S0023158412020140 | |
dc.relation.uri | https://doi.org/10.1039/c5cy00545k | |
dc.relation.uri | https://doi.org/10.1002/cctc.201300356 | |
dc.relation.uri | https://doi.org/10.3390/nano8040217 | |
dc.relation.uri | https://doi.org/10.1021/jp000583z | |
dc.relation.uri | https://doi.org/10.1134/s0023158414020086 | |
dc.relation.uri | https://doi.org/10.18524/2304-0947.2022.2(82).264875 | |
dc.relation.uri | https://doi.org/10.1016/j.ceramint.2005.02.014 | |
dc.relation.uri | https://doi.org/10.1039/C1CY00146A | |
dc.relation.uri | http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kiose T., Rakitskaya T., Ennan A., Vasylechko V., Gryshchouk G., 2023 | |
dc.subject | монооксид карбону | |
dc.subject | вуглецеві волокнисті матеріали | |
dc.subject | каталізатори | |
dc.subject | окиснення | |
dc.subject | респіраторні пристрої | |
dc.subject | carbon monoxide | |
dc.subject | carbon fiber materials | |
dc.subject | catalysts | |
dc.subject | oxidation | |
dc.subject | respiratory devices | |
dc.title | Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide | |
dc.title.alternative | Склад та активність купрум-паладієвого каталізатора на вуглецевому волокнистому матеріалі для очищення повітря від монооксиду карбону | |
dc.type | Article |
Files
License bundle
1 - 1 of 1