Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide

dc.citation.epage278
dc.citation.issue2
dc.citation.spage272
dc.contributor.affiliationOdesa I.I. Mechnikov National University
dc.contributor.affiliationPhysico-Chemical Institute of Environment and Human Protection
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorKiose, Tatyana
dc.contributor.authorRakitskaya, Tatyana
dc.contributor.authorEnnan, Alim
dc.contributor.authorVasylechko, Volodymyr
dc.contributor.authorGryshchouk, Halyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-12T08:30:43Z
dc.date.available2024-02-12T08:30:43Z
dc.date.created2023-03-16
dc.date.issued2023-03-16
dc.description.abstractСукупність методів дослідження (рентгенофазовий, десорбційний, кінетичний) використовували для встановлення стану базових компонентів K2PdCl4 і Cu(NO3)2 в каталізаторі окиснення монооксиду карбону киснем. Встановлено, що вихідні сполуки паладію (ІІ) і купруму (ІІ) під дією вуглецевого волокнистого носія змінюють свій стан. Паладій відновлюється до рентгеноаморфного Pd0, а купрум (ІІ) перебуває у формі кристалічної фази Cu2(OH)3Cl. Встановлено, що каталізатор проявляє захисні властивості в межах початкових концентрацій монооксиду карбону £ 300 мг/м3 та ефективного часу контакту 0,45 с, і його можна застосовувати в засобах захисту органів дихання людини.
dc.description.abstractA set of research methods (X-ray phase, desorption, kinetic) was used to determine the state of the basic components K2PdCl4 and Cu(NO3)2 in the catalyst for the oxidation of carbon monoxide by oxygen. It was found that the palladium (II) and copper (II) initial compounds under the action of carbon fiber carrier change their state. Palladium is reduced to X-ray amorphous Pd0, and copper (II) is in the form of a crystalline phase Cu2(OH)3Cl. It was found that the catalyst exhibits protective properties within the initial concentrations of carbon monoxide £ 300 mg/m3 and an effective contact time of 0.45 s and can be used in human respiratory protection.
dc.format.extent272-278
dc.format.pages7
dc.identifier.citationComposition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide / Tatyana Kiose, Tatyana Rakitskaya, Alim Ennan, Volodymyr Vasylechko, Halyna Gryshchouk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 272–278.
dc.identifier.citationenComposition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide / Tatyana Kiose, Tatyana Rakitskaya, Alim Ennan, Volodymyr Vasylechko, Halyna Gryshchouk // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 17. — No 2. — P. 272–278.
dc.identifier.doidoi.org/10.23939/chcht17.02.272
dc.identifier.issn1996-4196
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61255
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry & Chemical Technology, 2 (17), 2023
dc.relation.references[1] Rakitskaya, T.L.; Ennan, A.A.; Volkova, V.Ya. Nizkotempera-turnaya kataliticheskaya ochistka vozdukha ot ugarnogo gaza; Ekologiya, 2005.
dc.relation.references[2] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A. Kontseptualnyye osnovy razrabotki nizkotemperaturnykh katalizatorov okisleniya oksida ugleroda kislorodom vozdukha. Odesa National University Herald. Chemistry 2020, 25, 6-23. https://doi.org/10.18524/2304-0947.2020.4(76).216920
dc.relation.references[3] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A.A.; Volkova, V.Ya.; Jiga, A.M.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia І. metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-15. https://doi.org/10.18524/2304-0947.2013.2(46).56996
dc.relation.references[4] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A.; Volkova, V.Ya. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizato-rov okisleniia monooksida ugleroda respiratornogo naznacheniia ІІ. Oksidnye i oksidno-metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-10. https://doi.org/10.18524/2304-0947.2013.3(47).57002
dc.relation.references[5] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A. A.; Jiga, A.M.; Vol-kova, V.Ya.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. ІІІ. Nanesennye metallokompleksnye katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-12. https://doi.org/10.18524/2304-0947.2013.4(48).37012
dc.relation.references[6] Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide; 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. https://doi.org/10.2514/6.2010-6062
dc.relation.references[7] Croll, L.; Billingsley, B.; Brey, L.; Fansler, D.; Martinson, P. Design and Evaluation of Escape and CBRN Respirator Cartridges Using Nano Gold Carbon Monoxide Oxidation Catalysts; 10th International Symposium on Protection against Chemical and Bio-logical Warfare Agents; Stockholm, 2010.
dc.relation.references[8] Punde, S.S.; Tatarchuk, B.J. CO Removal at Ambient Condi-tions: Catalyst Screening and Impact of Operating Conditions. Sep. Purif. Technol. 2017, 183, 43-53. https://doi.org/10.1016/j.seppur.2017.03.007
dc.relation.references[9] Rakitskaya, T.L.; Kiose, T.A.; Golubchik, K.O.; Ennan, A.A.; Volkova, V.Y. Acid-Modified Clinoptilolite as a Support for Palla-dium-Copper Complexes Catalyzing Carbon Monoxide Oxidation with Air Oxygen. Chem. Cent. J. 2017, 11, 28. https://doi.org/10.1186/s13065-017-0256-6
dc.relation.references[10] Rakitskaya, T.L.; Kiose, T.A.; Zryutina, A.М.; Gladyshevskii, R.E.; Truba, A.S.; Vasylechko, V.O.; Demchenko, P.Yu.; Gryschouk, G.V.; Volkova, V.Ya. Solid-State Catalysts Based on Bentonites and Pd(II) Cu(II) Complexes for Low-Temperature Carbon Monoxide Oxidation. Solid State Phenom. 2013, 200, 299-304. https://doi.org/10.4028/www.scientific.net/SSP.200.299
dc.relation.references[11] Rakitskaya, T.L.; Dzhyga, G.M.; Kiose, T.A.; Oleksenko, L.P.; Volkova, V.Y. Pd(II), Cu(II), and Pillared Clay Based Nanocatalysts for Low-Temperature CO Oxidation. SN Appl. Sci. 2019, 1, 291. https://doi.org/10.1007/s42452-019-0314-x
dc.relation.references[12] Titov, D.N.; Ustyugov, A.V.; Tkachenko, O.P.; Kustov, L.M.; Zubavichus, Ya.V.; Veligzhanin, A.A.; Sadovskaya, N.V.; Oshanina, I.V.; Bruk, L.G.; Temkin, O.N. State of Active Components on the Surface of the PdCl2-CuCl2/γ-Al2O3 Catalyst for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2012, 53, 262-274. https://doi.org/10.1134/S0023158412020140
dc.relation.references[13] Du, X.; Li, H.; Yu, J.; Xiao, X.; Shi, Z.; Mao, D.; Lu, G. Realization of High Effective Pd–Cu–Clx/Al2O3 Catalyst for Low Temperature CO Oxidation by Pre-Synthesizing the Active Copper Phase of Cu2Cl(OH)3. Catal. Sci. Technol. 2015, 5, 3970-3979. https://doi.org/10.1039/c5cy00545k
dc.relation.references[14] Shen, C.; Li, H.; Yu, J.; Wu, G.; Mao, D.; Lu, G.A First-Principles DFT Study on the Active Sites of Pd-Cu-Clx/Al2O3 Catalyst for Low-Temperature CO Oxidation. ChemCatChem. 2013, 5, 2813-2817. https://doi.org/10.1002/cctc.201300356
dc.relation.references[15] Bruk, L.; Titov, D.; Ustyugov, A.; Zubavichus, Y.; Cherniko-va, V.; Tkachenko, O.; Kustov, L.; Murzin, V.; Oshanina, I.; Tem-kin, O. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/γ-Al2O3 Nanocatalyst. Nanomaterials 2018, 8, 217. https://doi.org/10.3390/nano8040217
dc.relation.references[16] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B. 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
dc.relation.references[17] Radkevich, V.Z.; Wilson, K.; Khaminets, S.G.; Sen’ko, T.L. Effect of Preparation Conditions on the Formation of the Active Phase of Carbon Fiber Catalytic Systems for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2014, 55, 252-267. https://doi.org/10.1134/s0023158414020086
dc.relation.references[18] Kiose, T.A.; Truba, A.S.; Rakitskaya, T.L.; Ennan, A.A.-A.; Rakitskiy, О.S. Effect of Certain Catalytic Poisons on the Activity of Cuprum-Paladium Complexes Applied on Carbon Material in The Reaction in the Reaction of Carbon Monoxide Oxidation by Air Oxygen. Odesa National University Herald. Chemistry 2022, 27, 5-19. https://doi.org/10.18524/2304-0947.2022.2(82).264875
dc.relation.references[19] Wang, S.; Chen, Z.-H.; Ma, W.-J.; Ma, Q.-S. Influence of Heat Treatment on Physical–Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32, 291-295. https://doi.org/10.1016/j.ceramint.2005.02.014
dc.relation.references[20] Shen, Y.; Guo, Y.; Wang, L.; Wang, Y.; Guo, Y.; Gong, X.; Lu, G. The Stability and Deactivation of Pd-Сu-Clx/A12O3 Catalyst for Low Temperature СО Охidation: An Effect of Moisture. Catal. Sci. Technol. 2011, 1, 1202-1207. https://doi.org/10.1039/C1CY00146A
dc.relation.references[21] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
dc.relation.references[22] Rakitskaya, T.L.; Truba, A.S.; Raskola, L.A.; Ennan A.A. Modyfikonanyi khlorydom manhanu(II) pryrodnyi klynoptylolit v reaktsii rozkladannya ozonu. Him. Fiz. Tehnol. Poverhni 2013, 4, 297-304.
dc.relation.references[23] Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Gryschouk, G.V.; Dzhiga, A.M.; Volkova, V.Y. Catalytic Activity of Pd(II) and Cu(II) Complexes Anchored with Natural and Pre-Modified Bentonite on the Oxidation of Carbon Monoxide. Chemistry of metals and alloys 2015, 8, 32-38. http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10
dc.relation.referencesen[1] Rakitskaya, T.L.; Ennan, A.A.; Volkova, V.Ya. Nizkotempera-turnaya kataliticheskaya ochistka vozdukha ot ugarnogo gaza; Ekologiya, 2005.
dc.relation.referencesen[2] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A. Kontseptualnyye osnovy razrabotki nizkotemperaturnykh katalizatorov okisleniya oksida ugleroda kislorodom vozdukha. Odesa National University Herald. Chemistry 2020, 25, 6-23. https://doi.org/10.18524/2304-0947.2020.4(76).216920
dc.relation.referencesen[3] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A.A.; Volkova, V.Ya.; Jiga, A.M.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia I. metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-15. https://doi.org/10.18524/2304-0947.2013.2(46).56996
dc.relation.referencesen[4] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A.; Volkova, V.Ya. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizato-rov okisleniia monooksida ugleroda respiratornogo naznacheniia II. Oksidnye i oksidno-metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-10. https://doi.org/10.18524/2304-0947.2013.3(47).57002
dc.relation.referencesen[5] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A. A.; Jiga, A.M.; Vol-kova, V.Ya.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. III. Nanesennye metallokompleksnye katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-12. https://doi.org/10.18524/2304-0947.2013.4(48).37012
dc.relation.referencesen[6] Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide; 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. https://doi.org/10.2514/6.2010-6062
dc.relation.referencesen[7] Croll, L.; Billingsley, B.; Brey, L.; Fansler, D.; Martinson, P. Design and Evaluation of Escape and CBRN Respirator Cartridges Using Nano Gold Carbon Monoxide Oxidation Catalysts; 10th International Symposium on Protection against Chemical and Bio-logical Warfare Agents; Stockholm, 2010.
dc.relation.referencesen[8] Punde, S.S.; Tatarchuk, B.J. CO Removal at Ambient Condi-tions: Catalyst Screening and Impact of Operating Conditions. Sep. Purif. Technol. 2017, 183, 43-53. https://doi.org/10.1016/j.seppur.2017.03.007
dc.relation.referencesen[9] Rakitskaya, T.L.; Kiose, T.A.; Golubchik, K.O.; Ennan, A.A.; Volkova, V.Y. Acid-Modified Clinoptilolite as a Support for Palla-dium-Copper Complexes Catalyzing Carbon Monoxide Oxidation with Air Oxygen. Chem. Cent. J. 2017, 11, 28. https://doi.org/10.1186/s13065-017-0256-6
dc.relation.referencesen[10] Rakitskaya, T.L.; Kiose, T.A.; Zryutina, A.M.; Gladyshevskii, R.E.; Truba, A.S.; Vasylechko, V.O.; Demchenko, P.Yu.; Gryschouk, G.V.; Volkova, V.Ya. Solid-State Catalysts Based on Bentonites and Pd(II) Cu(II) Complexes for Low-Temperature Carbon Monoxide Oxidation. Solid State Phenom. 2013, 200, 299-304. https://doi.org/10.4028/www.scientific.net/SSP.200.299
dc.relation.referencesen[11] Rakitskaya, T.L.; Dzhyga, G.M.; Kiose, T.A.; Oleksenko, L.P.; Volkova, V.Y. Pd(II), Cu(II), and Pillared Clay Based Nanocatalysts for Low-Temperature CO Oxidation. SN Appl. Sci. 2019, 1, 291. https://doi.org/10.1007/s42452-019-0314-x
dc.relation.referencesen[12] Titov, D.N.; Ustyugov, A.V.; Tkachenko, O.P.; Kustov, L.M.; Zubavichus, Ya.V.; Veligzhanin, A.A.; Sadovskaya, N.V.; Oshanina, I.V.; Bruk, L.G.; Temkin, O.N. State of Active Components on the Surface of the PdCl2-CuCl2/g-Al2O3 Catalyst for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2012, 53, 262-274. https://doi.org/10.1134/S0023158412020140
dc.relation.referencesen[13] Du, X.; Li, H.; Yu, J.; Xiao, X.; Shi, Z.; Mao, D.; Lu, G. Realization of High Effective Pd–Cu–Clx/Al2O3 Catalyst for Low Temperature CO Oxidation by Pre-Synthesizing the Active Copper Phase of Cu2Cl(OH)3. Catal. Sci. Technol. 2015, 5, 3970-3979. https://doi.org/10.1039/P.5cy00545k
dc.relation.referencesen[14] Shen, C.; Li, H.; Yu, J.; Wu, G.; Mao, D.; Lu, G.A First-Principles DFT Study on the Active Sites of Pd-Cu-Clx/Al2O3 Catalyst for Low-Temperature CO Oxidation. ChemCatChem. 2013, 5, 2813-2817. https://doi.org/10.1002/cctc.201300356
dc.relation.referencesen[15] Bruk, L.; Titov, D.; Ustyugov, A.; Zubavichus, Y.; Cherniko-va, V.; Tkachenko, O.; Kustov, L.; Murzin, V.; Oshanina, I.; Tem-kin, O. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2–CuCl2/g-Al2O3 Nanocatalyst. Nanomaterials 2018, 8, 217. https://doi.org/10.3390/nano8040217
dc.relation.referencesen[16] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B. 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
dc.relation.referencesen[17] Radkevich, V.Z.; Wilson, K.; Khaminets, S.G.; Sen’ko, T.L. Effect of Preparation Conditions on the Formation of the Active Phase of Carbon Fiber Catalytic Systems for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2014, 55, 252-267. https://doi.org/10.1134/s0023158414020086
dc.relation.referencesen[18] Kiose, T.A.; Truba, A.S.; Rakitskaya, T.L.; Ennan, A.A.-A.; Rakitskiy, O.S. Effect of Certain Catalytic Poisons on the Activity of Cuprum-Paladium Complexes Applied on Carbon Material in The Reaction in the Reaction of Carbon Monoxide Oxidation by Air Oxygen. Odesa National University Herald. Chemistry 2022, 27, 5-19. https://doi.org/10.18524/2304-0947.2022.2(82).264875
dc.relation.referencesen[19] Wang, S.; Chen, Z.-H.; Ma, W.-J.; Ma, Q.-S. Influence of Heat Treatment on Physical–Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32, 291-295. https://doi.org/10.1016/j.ceramint.2005.02.014
dc.relation.referencesen[20] Shen, Y.; Guo, Y.; Wang, L.; Wang, Y.; Guo, Y.; Gong, X.; Lu, G. The Stability and Deactivation of Pd-Su-Clx/A12O3 Catalyst for Low Temperature SO Okhidation: An Effect of Moisture. Catal. Sci. Technol. 2011, 1, 1202-1207. https://doi.org/10.1039/P.1CY00146A
dc.relation.referencesen[21] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
dc.relation.referencesen[22] Rakitskaya, T.L.; Truba, A.S.; Raskola, L.A.; Ennan A.A. Modyfikonanyi khlorydom manhanu(II) pryrodnyi klynoptylolit v reaktsii rozkladannya ozonu. Him. Fiz. Tehnol. Poverhni 2013, 4, 297-304.
dc.relation.referencesen[23] Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Gryschouk, G.V.; Dzhiga, A.M.; Volkova, V.Y. Catalytic Activity of Pd(II) and Cu(II) Complexes Anchored with Natural and Pre-Modified Bentonite on the Oxidation of Carbon Monoxide. Chemistry of metals and alloys 2015, 8, 32-38. http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10
dc.relation.urihttps://doi.org/10.18524/2304-0947.2020.4(76).216920
dc.relation.urihttps://doi.org/10.18524/2304-0947.2013.2(46).56996
dc.relation.urihttps://doi.org/10.18524/2304-0947.2013.3(47).57002
dc.relation.urihttps://doi.org/10.18524/2304-0947.2013.4(48).37012
dc.relation.urihttps://doi.org/10.2514/6.2010-6062
dc.relation.urihttps://doi.org/10.1016/j.seppur.2017.03.007
dc.relation.urihttps://doi.org/10.1186/s13065-017-0256-6
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/SSP.200.299
dc.relation.urihttps://doi.org/10.1007/s42452-019-0314-x
dc.relation.urihttps://doi.org/10.1134/S0023158412020140
dc.relation.urihttps://doi.org/10.1039/c5cy00545k
dc.relation.urihttps://doi.org/10.1002/cctc.201300356
dc.relation.urihttps://doi.org/10.3390/nano8040217
dc.relation.urihttps://doi.org/10.1021/jp000583z
dc.relation.urihttps://doi.org/10.1134/s0023158414020086
dc.relation.urihttps://doi.org/10.18524/2304-0947.2022.2(82).264875
dc.relation.urihttps://doi.org/10.1016/j.ceramint.2005.02.014
dc.relation.urihttps://doi.org/10.1039/C1CY00146A
dc.relation.urihttp://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kiose T., Rakitskaya T., Ennan A., Vasylechko V., Gryshchouk G., 2023
dc.subjectмонооксид карбону
dc.subjectвуглецеві волокнисті матеріали
dc.subjectкаталізатори
dc.subjectокиснення
dc.subjectреспіраторні пристрої
dc.subjectcarbon monoxide
dc.subjectcarbon fiber materials
dc.subjectcatalysts
dc.subjectoxidation
dc.subjectrespiratory devices
dc.titleComposition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide
dc.title.alternativeСклад та активність купрум-паладієвого каталізатора на вуглецевому волокнистому матеріалі для очищення повітря від монооксиду карбону
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v17n2_Kiose_T-Composition_and_Activity_272-278.pdf
Size:
593.81 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v17n2_Kiose_T-Composition_and_Activity_272-278__COVER.png
Size:
562.54 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: